{"title":"COBRA-LIKE 9 modulates cotton cell wall development via regulating cellulose deposition.","authors":"Qingfei He, Yujia Yu, Zhiguang Qin, Yujia Duan, Hanqiao Liu, Weixi Li, Xiaohui Song, Guozhong Zhu, Xiaoguang Shang, Wangzhen Guo","doi":"10.1093/plphys/kiae675","DOIUrl":null,"url":null,"abstract":"<p><p>Plant cell walls are complex and dynamic cellular structures critical for plant growth, development, physiology, and adaptation. Cellulose is one of the most important components of the cell wall. However, how cellulose microfibrils deposit and assemble into crystalline cellulose remains elusive. The COBRA-LIKE (COBL) plant-specific protein family plays vital roles in modulating the deposition and orientation of cellulose microfibril in plant cell walls. Here, we investigate the role of GhCOBL9 in cotton (Gossypium hirsutum) fiber development, an ideal model for studying cell elongation and cell wall thickening. The expression period of GhCOBL9 is consistent with the thickening stage of the secondary wall of cotton fibers. Overexpression of GhCOBL9 results in increased cellulose content in the cell wall and produces shorter, thicker, and stronger fibers, while RNA interference (RNAi)-mediated down-regulation of GhCOBL9 leads to the opposite phenotypes, indicating its crucial role in cell wall development. Subcellular localization and binding activity assays reveal that GhCOBL9 targets the cell wall and binds to crystalline cellulose with high affinity. Transcriptomic analysis of GhCOBL9 transgenic lines uncovers expression alterations in genes related to cellulose and monosaccharide biosynthesis. Furthermore, we identify a fasciclin-like arabinogalactan protein 9 (GhFLA9) as an interacting partner of GhCOBL9 to modulate cell wall development. Additionally, the R2R3-MYB transcription factor GhMYB46-5 activates GhCOBL9 expression by binding to the MYB46-responsive cis-regulatory element(M46RE)in the GhCOBL9 promoter. These findings broaden our knowledge of COBL function in modulating plant cell wall development.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae675","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Plant cell walls are complex and dynamic cellular structures critical for plant growth, development, physiology, and adaptation. Cellulose is one of the most important components of the cell wall. However, how cellulose microfibrils deposit and assemble into crystalline cellulose remains elusive. The COBRA-LIKE (COBL) plant-specific protein family plays vital roles in modulating the deposition and orientation of cellulose microfibril in plant cell walls. Here, we investigate the role of GhCOBL9 in cotton (Gossypium hirsutum) fiber development, an ideal model for studying cell elongation and cell wall thickening. The expression period of GhCOBL9 is consistent with the thickening stage of the secondary wall of cotton fibers. Overexpression of GhCOBL9 results in increased cellulose content in the cell wall and produces shorter, thicker, and stronger fibers, while RNA interference (RNAi)-mediated down-regulation of GhCOBL9 leads to the opposite phenotypes, indicating its crucial role in cell wall development. Subcellular localization and binding activity assays reveal that GhCOBL9 targets the cell wall and binds to crystalline cellulose with high affinity. Transcriptomic analysis of GhCOBL9 transgenic lines uncovers expression alterations in genes related to cellulose and monosaccharide biosynthesis. Furthermore, we identify a fasciclin-like arabinogalactan protein 9 (GhFLA9) as an interacting partner of GhCOBL9 to modulate cell wall development. Additionally, the R2R3-MYB transcription factor GhMYB46-5 activates GhCOBL9 expression by binding to the MYB46-responsive cis-regulatory element(M46RE)in the GhCOBL9 promoter. These findings broaden our knowledge of COBL function in modulating plant cell wall development.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.