Phase separation of MYB73 regulates seed oil biosynthesis in Arabidopsis.

IF 6.5 1区 生物学 Q1 PLANT SCIENCES Plant Physiology Pub Date : 2024-12-20 DOI:10.1093/plphys/kiae674
Yuzhou Yang, Que Kong, Zhiming Ma, Peng Ken Lim, Sanjay K Singh, Sitakanta Pattanaik, Marek Mutwil, Yansong Miao, Ling Yuan, Wei Ma
{"title":"Phase separation of MYB73 regulates seed oil biosynthesis in Arabidopsis.","authors":"Yuzhou Yang, Que Kong, Zhiming Ma, Peng Ken Lim, Sanjay K Singh, Sitakanta Pattanaik, Marek Mutwil, Yansong Miao, Ling Yuan, Wei Ma","doi":"10.1093/plphys/kiae674","DOIUrl":null,"url":null,"abstract":"<p><p>MYB family transcription factors (TFs) play crucial roles in plant development, metabolism, and responses to various stresses. However, whether MYB TFs are involved in regulating fatty acid biosynthesis in seeds remains largely elusive. Here, we demonstrated that transgenic Arabidopsis (Arabidopsis thaliana) plants overexpressing MYB73 exhibit altered FATTY ACID ELONGATION1 (FAE1) expression, seed oil content, and seed fatty acid composition. Electrophoretic mobility shift assays (EMSAs) showed that FAE1 is a direct target of MYB73, and functional assays revealed that MYB73 represses FAE1 promoter activity. Transcriptomic analysis of the MYB73-overexpressing plants detected significant changes in the expression of genes involved in fatty acid biosynthesis and triacylglycerol assembly. Furthermore, MYB73 expression was responsive to abscisic acid (ABA), and ABA responsive element binding factor 2 (ABF2) directly bound to the ABA-responsive element (ABRE) in the MYB73 promoter to activate its expression. Additionally, we determined that MYB73 exhibits the hallmarks of an intrinsically disordered protein and forms phase-separated condensates with liquid-like characteristics, which are important in regulating target gene expression. Together, our findings suggest that MYB73 condensate formation likely fine-tunes seed oil biosynthesis.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae674","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

MYB family transcription factors (TFs) play crucial roles in plant development, metabolism, and responses to various stresses. However, whether MYB TFs are involved in regulating fatty acid biosynthesis in seeds remains largely elusive. Here, we demonstrated that transgenic Arabidopsis (Arabidopsis thaliana) plants overexpressing MYB73 exhibit altered FATTY ACID ELONGATION1 (FAE1) expression, seed oil content, and seed fatty acid composition. Electrophoretic mobility shift assays (EMSAs) showed that FAE1 is a direct target of MYB73, and functional assays revealed that MYB73 represses FAE1 promoter activity. Transcriptomic analysis of the MYB73-overexpressing plants detected significant changes in the expression of genes involved in fatty acid biosynthesis and triacylglycerol assembly. Furthermore, MYB73 expression was responsive to abscisic acid (ABA), and ABA responsive element binding factor 2 (ABF2) directly bound to the ABA-responsive element (ABRE) in the MYB73 promoter to activate its expression. Additionally, we determined that MYB73 exhibits the hallmarks of an intrinsically disordered protein and forms phase-separated condensates with liquid-like characteristics, which are important in regulating target gene expression. Together, our findings suggest that MYB73 condensate formation likely fine-tunes seed oil biosynthesis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MYB73 的相分离调节拟南芥种子油的生物合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Physiology
Plant Physiology 生物-植物科学
CiteScore
12.20
自引率
5.40%
发文量
535
审稿时长
2.3 months
期刊介绍: Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research. As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.
期刊最新文献
Regulation of abscisic acid receptor mRNA stability: involvement of microRNA5628 in PYL6 transcript decay Calcium signaling in hypoxic response CALMODULIN-BINDING RECEPTOR-LIKE CYTOPLASMIC KINASE 3 regulates salt tolerance through CATALASE 2 in Arabidopsis. COBRA-LIKE 9 modulates cotton cell wall development via regulating cellulose deposition. Phase separation of MYB73 regulates seed oil biosynthesis in Arabidopsis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1