Sulfonation of IAA in Urtica eliminates its DR5 auxin activity.

IF 5.3 2区 生物学 Q1 PLANT SCIENCES Plant Cell Reports Pub Date : 2024-12-20 DOI:10.1007/s00299-024-03399-1
Klara Supikova, Asta Žukauskaitė, Andrea Kosinova, Aleš Pěnčík, Nuria De Diego, Lukáš Spíchal, Martin Fellner, Katerina Skorepova, Jiri Gruz
{"title":"Sulfonation of IAA in Urtica eliminates its DR5 auxin activity.","authors":"Klara Supikova, Asta Žukauskaitė, Andrea Kosinova, Aleš Pěnčík, Nuria De Diego, Lukáš Spíchal, Martin Fellner, Katerina Skorepova, Jiri Gruz","doi":"10.1007/s00299-024-03399-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>N-Sulfonated IAA was discovered as a novel auxin metabolite in Urtica where it is biosynthesized de novo utilizing inorganic sulfate. It showed no auxin activity in DR5::GUS assay, implying possible inactivation/storage mechanism. A novel auxin derivative, N-sulfoindole-3-acetic acid (IAA-N-SO<sub>3</sub>H, SIAA), was discovered in stinging nettle (Urtica dioica) among 116 sulfonated metabolites putatively identified by a semi-targeted UHPLC-QqTOF-MS analysis of 23 plant/algae/fungi species. These sulfometabolites were detected based on the presence of a neutral loss of sulfur trioxide, as indicated by the m/z difference of 79.9568 Da in the MS<sup>2</sup> spectra. The structure of newly discovered SIAA was confirmed by synthesizing its standard and comparing retention time, m/z and MS<sup>2</sup> spectrum with those of SIAA found in Urtica. To study its natural occurrence, 73 species in total were further analyzed by UHPLC-QqTOF-MS or targeted UHPLC-MS/MS method with a limit of detection of 244 fmol/g dry weight. However, SIAA was only detected in Urtica at a concentration of 13.906 ± 9.603 nmol/g dry weight. Its concentration was > 30 times higher than that of indole-3-acetic acid (IAA), and the SIAA/IAA ratio was further increased under different light conditions, especially in continuous blue light. In addition to SIAA, structurally similar metabolites, N-sulfoindole-3-lactic acid, 4-(sulfooxy)phenyllactic acid and 4-(sulfooxy)phenylacetic acid, were detected in Urtica for the first time. SIAA was biosynthesized from inorganic sulfate in seedlings, as confirmed by the incorporation of exogenous <sup>34</sup>S-ammonium sulfate (1 mM and 10 mM). SIAA exhibited no auxin activity, as demonstrated by both the Arabidopsis DR5::GUS assay and the Arabidopsis phenotype analysis. Sulfonation of IAA may therefore be a mechanism for IAA deactivation and/or storage in Urtica, similar to sulfonation of the jasmonates in Arabidopsis.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 1","pages":"8"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662057/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-024-03399-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Key message: N-Sulfonated IAA was discovered as a novel auxin metabolite in Urtica where it is biosynthesized de novo utilizing inorganic sulfate. It showed no auxin activity in DR5::GUS assay, implying possible inactivation/storage mechanism. A novel auxin derivative, N-sulfoindole-3-acetic acid (IAA-N-SO3H, SIAA), was discovered in stinging nettle (Urtica dioica) among 116 sulfonated metabolites putatively identified by a semi-targeted UHPLC-QqTOF-MS analysis of 23 plant/algae/fungi species. These sulfometabolites were detected based on the presence of a neutral loss of sulfur trioxide, as indicated by the m/z difference of 79.9568 Da in the MS2 spectra. The structure of newly discovered SIAA was confirmed by synthesizing its standard and comparing retention time, m/z and MS2 spectrum with those of SIAA found in Urtica. To study its natural occurrence, 73 species in total were further analyzed by UHPLC-QqTOF-MS or targeted UHPLC-MS/MS method with a limit of detection of 244 fmol/g dry weight. However, SIAA was only detected in Urtica at a concentration of 13.906 ± 9.603 nmol/g dry weight. Its concentration was > 30 times higher than that of indole-3-acetic acid (IAA), and the SIAA/IAA ratio was further increased under different light conditions, especially in continuous blue light. In addition to SIAA, structurally similar metabolites, N-sulfoindole-3-lactic acid, 4-(sulfooxy)phenyllactic acid and 4-(sulfooxy)phenylacetic acid, were detected in Urtica for the first time. SIAA was biosynthesized from inorganic sulfate in seedlings, as confirmed by the incorporation of exogenous 34S-ammonium sulfate (1 mM and 10 mM). SIAA exhibited no auxin activity, as demonstrated by both the Arabidopsis DR5::GUS assay and the Arabidopsis phenotype analysis. Sulfonation of IAA may therefore be a mechanism for IAA deactivation and/or storage in Urtica, similar to sulfonation of the jasmonates in Arabidopsis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
荨麻中 IAA 的磺化作用可消除其 DR5 auxin 活性。
n -磺化IAA是在荨麻中发现的一种新的生长素代谢物,它是利用无机硫酸盐重新生物合成的。在DR5::GUS实验中未发现生长素活性,可能存在失活/储存机制。利用半靶向UHPLC-QqTOF-MS对23种植物/藻类/真菌的116种磺化代谢物进行分析,在刺荨麻(Urtica dioica)中发现了一种新的生长素衍生物n -磺化吲哚-3-乙酸(IAA-N-SO3H, SIAA)。这些硫代谢物是基于三氧化硫中性损失的存在而检测到的,如MS2光谱中79.9568 Da的m/z差所示。通过合成标准品,并与Urtica中发现的SIAA的保留时间、m/z和MS2谱进行比较,证实了新发现SIAA的结构。采用UHPLC-QqTOF-MS或靶向UHPLC-MS/MS方法分析了其中的73种,检出限为244 fmol/g干重。而SIAA仅在荨麻中检测到,浓度为13.906±9.603 nmol/g干重。其浓度比吲哚-3-乙酸(IAA)高50 ~ 30倍,且在不同光照条件下SIAA/IAA比进一步提高,特别是在连续蓝光下。除SIAA外,结构相似的代谢产物n -磺基吲哚-3-乳酸、4-(亚砜基)苯乳酸和4-(亚砜基)苯乙酸也首次在荨荨花中检测到。通过外源34s硫酸铵(1 mM和10 mM)的掺入,证实了SIAA是由无机硫酸盐在幼苗中生物合成的。拟南芥DR5::GUS实验和拟南芥表型分析均证实SIAA不具有生长素活性。因此,IAA的磺化可能是荨麻中IAA失活和/或储存的一种机制,类似于拟南芥中茉莉酸盐的磺化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Cell Reports
Plant Cell Reports 生物-植物科学
CiteScore
10.80
自引率
1.60%
发文量
135
审稿时长
3.2 months
期刊介绍: Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as: - genomics and genetics - metabolism - cell biology - abiotic and biotic stress - phytopathology - gene transfer and expression - molecular pharming - systems biology - nanobiotechnology - genome editing - phenomics and synthetic biology The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.
期刊最新文献
Unraveling the role of autophagy and antioxidants in anther and pistil responses to heat stress in rapeseed (Brassica napus L.). Essential role of rice ERF101 in the perception of TAL effectors and immune activation mediated by the CC-BED NLR Xa1. Novel insight of the SVP gene involved in pedicel length based on genomics analysis in cherry. Pectin methylesterase inhibitor 58 negatively regulates ray petal elongation by inhibiting cell expansion in Gerbera hybrida. A high temperature responsive UDP-glucosyltransferase gene OsUGT72F1 enhances heat tolerance in rice and Arabidopsis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1