Simulating prenatal language exposure in computational models: An exploration study.

IF 2.8 1区 心理学 Q1 PSYCHOLOGY, EXPERIMENTAL Cognition Pub Date : 2024-12-18 DOI:10.1016/j.cognition.2024.106044
María Andrea Cruz Blandón, Nayeli Gonzalez-Gomez, Marvin Lavechin, Okko Räsänen
{"title":"Simulating prenatal language exposure in computational models: An exploration study.","authors":"María Andrea Cruz Blandón, Nayeli Gonzalez-Gomez, Marvin Lavechin, Okko Räsänen","doi":"10.1016/j.cognition.2024.106044","DOIUrl":null,"url":null,"abstract":"<p><p>Researchers have hypothesized that infant language learning starts from the third trimester of pregnancy. This is supported by studies with fetuses and newborns showing discrimination/preference for their native language. Jointly with empirical research, initial computational modeling studies have investigated whether learning language patterns from speech input benefits from auditory prenatal language exposure (PLE), showing some advantages for prior adaptation to speech-like patterns. However, these modeling studies have not modeled prenatal speech input in an ecologically representative manner regarding quality or quantity. This study describes an ecologically representative framework for modeling PLE for full-term and preterm infants. The approach is based on empirical estimates of the amount of prenatal speech input together with a model of speech signal attenuation from the external air to the fetus' auditory system. Using this framework, we conduct language learning simulations with computational models that learn from acoustic speech input in an unsupervised manner. We compare the effects of PLE to standard learning from only postnatal input on various early language phenomena. The results show how incorporating PLE can affect models' learning outcomes, including differences between full-term and preterm conditions. Moreover, PLE duration might influence model behavior, depending on the linguistic capability being tested. While the inclusion of PLE did not improve the compatibility of the tested models with empirical infant data, our study highlights the relevance of PLE as a factor in modeling studies. Moreover, it provides a basic framework for modeling the prenatal period in future computational studies.</p>","PeriodicalId":48455,"journal":{"name":"Cognition","volume":"256 ","pages":"106044"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognition","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1016/j.cognition.2024.106044","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Researchers have hypothesized that infant language learning starts from the third trimester of pregnancy. This is supported by studies with fetuses and newborns showing discrimination/preference for their native language. Jointly with empirical research, initial computational modeling studies have investigated whether learning language patterns from speech input benefits from auditory prenatal language exposure (PLE), showing some advantages for prior adaptation to speech-like patterns. However, these modeling studies have not modeled prenatal speech input in an ecologically representative manner regarding quality or quantity. This study describes an ecologically representative framework for modeling PLE for full-term and preterm infants. The approach is based on empirical estimates of the amount of prenatal speech input together with a model of speech signal attenuation from the external air to the fetus' auditory system. Using this framework, we conduct language learning simulations with computational models that learn from acoustic speech input in an unsupervised manner. We compare the effects of PLE to standard learning from only postnatal input on various early language phenomena. The results show how incorporating PLE can affect models' learning outcomes, including differences between full-term and preterm conditions. Moreover, PLE duration might influence model behavior, depending on the linguistic capability being tested. While the inclusion of PLE did not improve the compatibility of the tested models with empirical infant data, our study highlights the relevance of PLE as a factor in modeling studies. Moreover, it provides a basic framework for modeling the prenatal period in future computational studies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cognition
Cognition PSYCHOLOGY, EXPERIMENTAL-
CiteScore
6.40
自引率
5.90%
发文量
283
期刊介绍: Cognition is an international journal that publishes theoretical and experimental papers on the study of the mind. It covers a wide variety of subjects concerning all the different aspects of cognition, ranging from biological and experimental studies to formal analysis. Contributions from the fields of psychology, neuroscience, linguistics, computer science, mathematics, ethology and philosophy are welcome in this journal provided that they have some bearing on the functioning of the mind. In addition, the journal serves as a forum for discussion of social and political aspects of cognitive science.
期刊最新文献
Metacognition facilitates theory of mind through optimal weighting of trait inferences. Objective priming from pre-imagining inputs before binocular rivalry presentations does not predict individual differences in the subjective intensity of imagined experiences. Simulating prenatal language exposure in computational models: An exploration study. Generics and Quantified Generalizations: Asymmetry Effects and Strategic Communicators. Beauty is in the eye of your cohort: Structured individual differences allow predictions of individualized aesthetic ratings of images.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1