A reconstruction method for ptychography based on residual dense network.

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION Journal of X-Ray Science and Technology Pub Date : 2024-12-18 DOI:10.3233/XST-240114
Mengnan Liu, Yu Han, Xiaoqi Xi, Lei Li, Zijian Xu, Xiangzhi Zhang, Linlin Zhu, Bin Yan
{"title":"A reconstruction method for ptychography based on residual dense network.","authors":"Mengnan Liu, Yu Han, Xiaoqi Xi, Lei Li, Zijian Xu, Xiangzhi Zhang, Linlin Zhu, Bin Yan","doi":"10.3233/XST-240114","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Coherent diffraction imaging (CDI) is an important lens-free imaging method. As a variant of CDI, ptychography enables the imaging of objects with arbitrary lateral sizes. However, traditional phase retrieval methods are time-consuming for ptychographic imaging of large-size objects, e.g., integrated circuits (IC). Especially when ptychography is combined with computed tomography (CT) or computed laminography (CL), time consumption increases greatly.</p><p><strong>Objective: </strong>In this work, we aim to propose a new deep learning-based approach to implement a quick and robust reconstruction of ptychography.</p><p><strong>Methods: </strong>Inspired by the strong advantages of the residual dense network for computer vision tasks, we propose a dense residual two-branch network (RDenPtycho) based on the ptychography two-branch reconstruction architecture for the fast and robust reconstruction of ptychography. The network relies on the residual dense block to construct mappings from diffraction patterns to amplitudes and phases. In addition, we integrate the physical processes of ptychography into the training of the network to further improve the performance.</p><p><strong>Results: </strong>The proposed RDenPtycho is evaluated using the publicly available ptychography dataset from the Advanced Photon Source. The results show that the proposed method can faithfully and robustly recover the detailed information of the objects. Ablation experiments demonstrate the effectiveness of the components in the proposed method for performance enhancement.</p><p><strong>Significance: </strong>The proposed method enables fast, accurate, and robust reconstruction of ptychography, and is of potential significance for 3D ptychography. The proposed method and experiments can resolve similar problems in other fields.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/XST-240114","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Coherent diffraction imaging (CDI) is an important lens-free imaging method. As a variant of CDI, ptychography enables the imaging of objects with arbitrary lateral sizes. However, traditional phase retrieval methods are time-consuming for ptychographic imaging of large-size objects, e.g., integrated circuits (IC). Especially when ptychography is combined with computed tomography (CT) or computed laminography (CL), time consumption increases greatly.

Objective: In this work, we aim to propose a new deep learning-based approach to implement a quick and robust reconstruction of ptychography.

Methods: Inspired by the strong advantages of the residual dense network for computer vision tasks, we propose a dense residual two-branch network (RDenPtycho) based on the ptychography two-branch reconstruction architecture for the fast and robust reconstruction of ptychography. The network relies on the residual dense block to construct mappings from diffraction patterns to amplitudes and phases. In addition, we integrate the physical processes of ptychography into the training of the network to further improve the performance.

Results: The proposed RDenPtycho is evaluated using the publicly available ptychography dataset from the Advanced Photon Source. The results show that the proposed method can faithfully and robustly recover the detailed information of the objects. Ablation experiments demonstrate the effectiveness of the components in the proposed method for performance enhancement.

Significance: The proposed method enables fast, accurate, and robust reconstruction of ptychography, and is of potential significance for 3D ptychography. The proposed method and experiments can resolve similar problems in other fields.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
期刊最新文献
Industrial digital radiographic image denoising based on improved KBNet. Research on the effectiveness of multi-view slice correction strategy based on deep learning in high pitch helical CT reconstruction. A fully linearized ADMM algorithm for optimization based image reconstruction. A reconstruction method for ptychography based on residual dense network. Can AI generate diagnostic reports for radiologist approval on CXR images? A multi-reader and multi-case observer performance study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1