Turing patterns with cellular computers.

Lewis Grozinger, Ángel Goñi-Moreno
{"title":"Turing patterns with cellular computers.","authors":"Lewis Grozinger, Ángel Goñi-Moreno","doi":"10.1016/j.cels.2024.11.015","DOIUrl":null,"url":null,"abstract":"<p><p>Turing patterns are a key theoretical foundation for understanding organ development and organization. While they have been found to occur in natural systems, implementing new biological systems that form Turing patterns has remained challenging. To address this, Tica et al.<sup>1</sup> used synthetic genetic networks to engineer living cellular computers that successfully generate Turing patterns within growing bacterial populations.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":"15 12","pages":"1105-1106"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2024.11.015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Turing patterns are a key theoretical foundation for understanding organ development and organization. While they have been found to occur in natural systems, implementing new biological systems that form Turing patterns has remained challenging. To address this, Tica et al.1 used synthetic genetic networks to engineer living cellular computers that successfully generate Turing patterns within growing bacterial populations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图灵模式与细胞计算机。
图灵模式是理解器官发育和组织的重要理论基础。虽然图灵模式已被发现存在于自然系统中,但实现能形成图灵模式的新生物系统仍具有挑战性。为了解决这个问题,Tica 等人1 利用合成遗传网络设计了活细胞计算机,成功地在不断生长的细菌种群中生成了图灵模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spatial transcriptomics-aided localization for single-cell transcriptomics with STALocator. Inferring cell trajectories of spatial transcriptomics via optimal transport analysis. DeST-OT: Alignment of spatiotemporal transcriptomics data. Subspecies phylogeny in the human gut revealed by co-evolutionary constraints across the bacterial kingdom. Multiome Perturb-seq unlocks scalable discovery of integrated perturbation effects on the transcriptome and epigenome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1