Myriscagayanone C, a new compound from the fruit of myristica cagayanensis, inhibits fMLP-induced respiratory bursts by specifically preventing Akt translocation in human neutrophils.
{"title":"Myriscagayanone C, a new compound from the fruit of myristica cagayanensis, inhibits fMLP-induced respiratory bursts by specifically preventing Akt translocation in human neutrophils.","authors":"Hsiang-Ruei Liao, Chen-Lung Chen, Yu-Yao Kao, Fu-Chao Liu, Ching-Ping Tseng, Jih-Jung Chen","doi":"10.1016/j.cbi.2024.111357","DOIUrl":null,"url":null,"abstract":"<p><p>Neutrophils that are overactivated can cause inflammatory diseases. Neutrophils possess various surface receptors, including G-protein-coupled chemoattractant receptors, which assist in recognizing pathogen attacks and the inflammatory environment. Therefore, targeting G-protein-coupled chemoattractant receptors and their downstream molecules is important for preventing abnormal neutrophil activation. This study examines the effects and underlying mechanism of myriscagayanone C, a new compound obtained from the fruit of myristica cagayanensis, on neutrophil respiratory burst induced by fMLP. The immunoblotting assay was conducted to assess the mechanisms by which myriscagayanone C inhibits fMLP-induced respiratory burst by disrupting the translocation of Akt to the cellular membrane. Briefly, myriscagayanone C suppressed the production of superoxide anions induced by fMLP on human neutrophils in a concentration-dependent manner (IC<sub>50</sub>: 4.73±0.68 μM). Myriscagayanone C blocked fMLP-induced Akt translocation to the cell membrane, inhibiting Akt<sup>T308</sup> and Akt<sup>S473</sup> phosphorylation by PDK1<sup>Y373/376</sup> and mTOR<sup>S2481</sup>, respectively. Myriscagayanone C inhibited fMLP-induced p47<sup>phox</sup> phosphorylation and translocation. Myriscagayanone C did not inhibit the activity of PI3K, the amount of phosphatidylinositol (3, 4, 5)-trisphosphate, or the translocation of phosphorylated-PDK1<sup>Y373/376</sup> and -mTOR<sup>S2481</sup> to the membrane. Myriscagayanone C did not inhibit fMLP-induced PKC, Src, ERK1/2, p38 phosphorylation, and intracellular calcium mobilization. Myriscagayanone C did not inhibit the chemotaxis and CD11b expression induced by fMLP. Myriscagayanone C did not inhibit PMA-induced superoxide anion production and neutrophil extracellular trap formation. According to this data, myriscagayanone C inhibits fMLP-induced neutrophil superoxide anion production by interrupting the translocation of Akt to the plasma membrane, which affects the NADPH oxidase activity by preventing p47<sup>phox</sup> phosphorylation and translocation.</p>","PeriodicalId":93932,"journal":{"name":"Chemico-biological interactions","volume":" ","pages":"111357"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemico-biological interactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cbi.2024.111357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Neutrophils that are overactivated can cause inflammatory diseases. Neutrophils possess various surface receptors, including G-protein-coupled chemoattractant receptors, which assist in recognizing pathogen attacks and the inflammatory environment. Therefore, targeting G-protein-coupled chemoattractant receptors and their downstream molecules is important for preventing abnormal neutrophil activation. This study examines the effects and underlying mechanism of myriscagayanone C, a new compound obtained from the fruit of myristica cagayanensis, on neutrophil respiratory burst induced by fMLP. The immunoblotting assay was conducted to assess the mechanisms by which myriscagayanone C inhibits fMLP-induced respiratory burst by disrupting the translocation of Akt to the cellular membrane. Briefly, myriscagayanone C suppressed the production of superoxide anions induced by fMLP on human neutrophils in a concentration-dependent manner (IC50: 4.73±0.68 μM). Myriscagayanone C blocked fMLP-induced Akt translocation to the cell membrane, inhibiting AktT308 and AktS473 phosphorylation by PDK1Y373/376 and mTORS2481, respectively. Myriscagayanone C inhibited fMLP-induced p47phox phosphorylation and translocation. Myriscagayanone C did not inhibit the activity of PI3K, the amount of phosphatidylinositol (3, 4, 5)-trisphosphate, or the translocation of phosphorylated-PDK1Y373/376 and -mTORS2481 to the membrane. Myriscagayanone C did not inhibit fMLP-induced PKC, Src, ERK1/2, p38 phosphorylation, and intracellular calcium mobilization. Myriscagayanone C did not inhibit the chemotaxis and CD11b expression induced by fMLP. Myriscagayanone C did not inhibit PMA-induced superoxide anion production and neutrophil extracellular trap formation. According to this data, myriscagayanone C inhibits fMLP-induced neutrophil superoxide anion production by interrupting the translocation of Akt to the plasma membrane, which affects the NADPH oxidase activity by preventing p47phox phosphorylation and translocation.