The human auditory cortex concurrently tracks syllabic and phonemic timescales via acoustic spectral flux

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Advances Pub Date : 2024-12-20 DOI:10.1126/sciadv.ado8915
Jérémy Giroud, Agnès Trébuchon, Manuel Mercier, Matthew H. Davis, Benjamin Morillon
{"title":"The human auditory cortex concurrently tracks syllabic and phonemic timescales via acoustic spectral flux","authors":"Jérémy Giroud, Agnès Trébuchon, Manuel Mercier, Matthew H. Davis, Benjamin Morillon","doi":"10.1126/sciadv.ado8915","DOIUrl":null,"url":null,"abstract":"Dynamical theories of speech processing propose that the auditory cortex parses acoustic information in parallel at the syllabic and phonemic timescales. We developed a paradigm to independently manipulate both linguistic timescales, and acquired intracranial recordings from 11 patients who are epileptic listening to French sentences. Our results indicate that (i) syllabic and phonemic timescales are both reflected in the acoustic spectral flux; (ii) during comprehension, the auditory cortex tracks the syllabic timescale in the theta range, while neural activity in the alpha-beta range phase locks to the phonemic timescale; (iii) these neural dynamics occur simultaneously and share a joint spatial location; (iv) the spectral flux embeds two timescales—in the theta and low-beta ranges—across 17 natural languages. These findings help us understand how the human brain extracts acoustic information from the continuous speech signal at multiple timescales simultaneously, a prerequisite for subsequent linguistic processing.","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"43 1","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.ado8915","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamical theories of speech processing propose that the auditory cortex parses acoustic information in parallel at the syllabic and phonemic timescales. We developed a paradigm to independently manipulate both linguistic timescales, and acquired intracranial recordings from 11 patients who are epileptic listening to French sentences. Our results indicate that (i) syllabic and phonemic timescales are both reflected in the acoustic spectral flux; (ii) during comprehension, the auditory cortex tracks the syllabic timescale in the theta range, while neural activity in the alpha-beta range phase locks to the phonemic timescale; (iii) these neural dynamics occur simultaneously and share a joint spatial location; (iv) the spectral flux embeds two timescales—in the theta and low-beta ranges—across 17 natural languages. These findings help us understand how the human brain extracts acoustic information from the continuous speech signal at multiple timescales simultaneously, a prerequisite for subsequent linguistic processing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
期刊最新文献
Ain't no stoppin' us now…. Meeting metformin again for the first time. The human auditory cortex concurrently tracks syllabic and phonemic timescales via acoustic spectral flux Evolutionary engineering of Saccharomyces cerevisiae : Crafting a synthetic methylotroph via self-reprogramming Approaching the standard quantum limit of a Rydberg-atom microwave electrometer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1