Jeffrey D. Herrick, S. Douglas Kaylor, Jean‐Jacques B. Dubois
{"title":"Predicting the Effects of Ozone on Long‐Term Growth of Aspen Trees Using Response Functions Developed From Seedlings Grown in Field Chambers","authors":"Jeffrey D. Herrick, S. Douglas Kaylor, Jean‐Jacques B. Dubois","doi":"10.1111/gcb.70003","DOIUrl":null,"url":null,"abstract":"Tropospheric ozone (O<jats:sub>3</jats:sub>) is among the most pervasive and harmful air pollutants known to affect ecosystems. In the United States, the Environmental Protection Agency and other agencies are tasked with protecting plants and ecosystems from harmful O<jats:sub>3</jats:sub> exposures. Controlled exposure experiments conducted in field open‐top chambers (OTCs) with small tree seedlings have been used to estimate empirical models of tree growth in response to O<jats:sub>3</jats:sub> exposure for more than 16 species. While this experimental method makes it possible to obtain detailed exposure‐response data, it remains uncertain whether predictions of empirical models parameterized using those data are sufficiently accurate when applied to trees grown in uncontrolled natural environments for long periods. We used O<jats:sub>3</jats:sub> exposure‐response relationships developed from several OTC studies of trembling aspen (<jats:styled-content style=\"fixed-case\"><jats:italic>Populus tremuloides</jats:italic></jats:styled-content> Michx.) seedlings to predict the growth of the same species in the Aspen FACE “free‐air” O<jats:sub>3</jats:sub> exposure experiment in Rhinelander, Wisconsin, over 11 years. We acquired individual tree growth data and hourly O<jats:sub>3</jats:sub> exposure from the ambient and elevated O<jats:sub>3</jats:sub> plots in the Aspen FACE experiment, computed annual exposure using the same metrics of O<jats:sub>3</jats:sub> exposure as were used in the OTC seedling experiments, and generated predictions of growth in the Aspen FACE exposures. A simple empirical model parameterized using the OTC seedling data accurately predicted the percent above‐ground biomass loss due to O<jats:sub>3</jats:sub> exposure in the Aspen FACE trees for all 11 years. In the Aspen FACE experiment, the effect of O<jats:sub>3</jats:sub> exposure was established in early years and continued to be observed in later years without worsening. Our study suggests that O<jats:sub>3</jats:sub> exposure‐response relationships obtained from OTC seedling studies can be used to make inferences about effects on larger trees. These results imply that researchers can use these relationships with confidence when estimating risks of O<jats:sub>3</jats:sub> pollution across the United States.","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"89 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/gcb.70003","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Tropospheric ozone (O3) is among the most pervasive and harmful air pollutants known to affect ecosystems. In the United States, the Environmental Protection Agency and other agencies are tasked with protecting plants and ecosystems from harmful O3 exposures. Controlled exposure experiments conducted in field open‐top chambers (OTCs) with small tree seedlings have been used to estimate empirical models of tree growth in response to O3 exposure for more than 16 species. While this experimental method makes it possible to obtain detailed exposure‐response data, it remains uncertain whether predictions of empirical models parameterized using those data are sufficiently accurate when applied to trees grown in uncontrolled natural environments for long periods. We used O3 exposure‐response relationships developed from several OTC studies of trembling aspen (Populus tremuloides Michx.) seedlings to predict the growth of the same species in the Aspen FACE “free‐air” O3 exposure experiment in Rhinelander, Wisconsin, over 11 years. We acquired individual tree growth data and hourly O3 exposure from the ambient and elevated O3 plots in the Aspen FACE experiment, computed annual exposure using the same metrics of O3 exposure as were used in the OTC seedling experiments, and generated predictions of growth in the Aspen FACE exposures. A simple empirical model parameterized using the OTC seedling data accurately predicted the percent above‐ground biomass loss due to O3 exposure in the Aspen FACE trees for all 11 years. In the Aspen FACE experiment, the effect of O3 exposure was established in early years and continued to be observed in later years without worsening. Our study suggests that O3 exposure‐response relationships obtained from OTC seedling studies can be used to make inferences about effects on larger trees. These results imply that researchers can use these relationships with confidence when estimating risks of O3 pollution across the United States.
期刊介绍:
Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health.
Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.