Measurement and Prediction of Blast-Induced Flyrock Distance Using Unmanned Aerial Vehicles and Metaheuristic-Optimized ANFIS Neural Networks

IF 4.8 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Natural Resources Research Pub Date : 2024-12-21 DOI:10.1007/s11053-024-10443-0
Hoang Nguyen, Nguyen Van Thieu
{"title":"Measurement and Prediction of Blast-Induced Flyrock Distance Using Unmanned Aerial Vehicles and Metaheuristic-Optimized ANFIS Neural Networks","authors":"Hoang Nguyen, Nguyen Van Thieu","doi":"10.1007/s11053-024-10443-0","DOIUrl":null,"url":null,"abstract":"<p>Flyrock from blasting in open-pit mining is one of the most dangerous occurrences that can cause accidents to workers, damage to machinery and equipment and even fatalities. Therefore, quick and reliable prediction of blast-induced flyrock distance (BIFRD) in open-pit mines is very crucial to ensure the safety of the surrounding environment. In this study, unmanned aerial vehicle (UAV) technology combined with advanced artificial intelligence techniques was used to predict BIFRD in open-pit mines and improve safety. UAV was used to record blasting operations and the resulting flyrock. The distance of the flyrock was then measured from the recorded video footage and was analyzed using the ProAnalyst software. Then, various metaheuristics-optimized ANFIS (adaptive neuro-fuzzy inference system) was developed to predict BIFRD. These networks were optimized using adaptive differential evolution with optional external archive (JADE), genetic algorithm (GA), fireworks algorithm (FWA), and artificial bee colony (ABC) algorithms and resulted to JADE–ANFIS, GA–ANFIS, FWA–ANFIS, and ABC–ANFIS models. A dataset with 204 blasting events was gathered and analyzed, and finally, only four input variables were used for developing these models, including spacing, weight charge, stemming, and powder factor. The results showed that JADE–ANFIS is the best with high accuracy (97.8%), good generalizability (MAPE of 1.1%), and reasonable training time for predicting BIFRD in this study. The other models performed poorly with accuracy ranging from 88.7 to 96.5% and MAPE ranging from 1.4 to 3.0%. Sensitivity analysis also showed that the length of stemming is the most affecting factor to flyrock distance in blasting and thus careful consideration should be given in designing blast patterns to control flyrock distance in open-pit mines.</p>","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"111 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11053-024-10443-0","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Flyrock from blasting in open-pit mining is one of the most dangerous occurrences that can cause accidents to workers, damage to machinery and equipment and even fatalities. Therefore, quick and reliable prediction of blast-induced flyrock distance (BIFRD) in open-pit mines is very crucial to ensure the safety of the surrounding environment. In this study, unmanned aerial vehicle (UAV) technology combined with advanced artificial intelligence techniques was used to predict BIFRD in open-pit mines and improve safety. UAV was used to record blasting operations and the resulting flyrock. The distance of the flyrock was then measured from the recorded video footage and was analyzed using the ProAnalyst software. Then, various metaheuristics-optimized ANFIS (adaptive neuro-fuzzy inference system) was developed to predict BIFRD. These networks were optimized using adaptive differential evolution with optional external archive (JADE), genetic algorithm (GA), fireworks algorithm (FWA), and artificial bee colony (ABC) algorithms and resulted to JADE–ANFIS, GA–ANFIS, FWA–ANFIS, and ABC–ANFIS models. A dataset with 204 blasting events was gathered and analyzed, and finally, only four input variables were used for developing these models, including spacing, weight charge, stemming, and powder factor. The results showed that JADE–ANFIS is the best with high accuracy (97.8%), good generalizability (MAPE of 1.1%), and reasonable training time for predicting BIFRD in this study. The other models performed poorly with accuracy ranging from 88.7 to 96.5% and MAPE ranging from 1.4 to 3.0%. Sensitivity analysis also showed that the length of stemming is the most affecting factor to flyrock distance in blasting and thus careful consideration should be given in designing blast patterns to control flyrock distance in open-pit mines.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Natural Resources Research
Natural Resources Research Environmental Science-General Environmental Science
CiteScore
11.90
自引率
11.10%
发文量
151
期刊介绍: This journal publishes quantitative studies of natural (mainly but not limited to mineral) resources exploration, evaluation and exploitation, including environmental and risk-related aspects. Typical articles use geoscientific data or analyses to assess, test, or compare resource-related aspects. NRR covers a wide variety of resources including minerals, coal, hydrocarbon, geothermal, water, and vegetation. Case studies are welcome.
期刊最新文献
Enhanced Lithology Classification Using an Interpretable SHAP Model Integrating Semi-Supervised Contrastive Learning and Transformer with Well Logging Data A Novel Framework for Optimizing the Prediction of Areas Favorable to Porphyry-Cu Mineralization: Combination of Ant Colony and Grid Search Optimization Algorithms with Support Vector Machines Small-Sample InSAR Time-Series Data Prediction Method Based on Generative Models Exploring the Dynamic Evolution of Shallow and Deep Coal Nanopore Structures Under Acidic Fracturing Fluids Using Synchrotron Radiation Small-Angle X-Ray Scattering A Novel Approach for Enhancing Geologically Aligned Fusion of Multiple Geophysical Inverse Models in the Porphyry-Cu Deposit of Zaftak, Kerman, Iran
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1