Combating plant diseases through transition metal allocation

IF 8.3 1区 生物学 Q1 PLANT SCIENCES New Phytologist Pub Date : 2024-12-20 DOI:10.1111/nph.20366
Aishee De, Cuong V. Hoang, Viviana Escudero, Alejandro M. Armas, Carlos Echavarri-Erasun, Manuel González-Guerrero, Lucía Jordá
{"title":"Combating plant diseases through transition metal allocation","authors":"Aishee De, Cuong V. Hoang, Viviana Escudero, Alejandro M. Armas, Carlos Echavarri-Erasun, Manuel González-Guerrero, Lucía Jordá","doi":"10.1111/nph.20366","DOIUrl":null,"url":null,"abstract":"Understanding how plants fend-off invading microbes is essential for food security and the economy of large parts of the world. Consequently, a sustained and dedicated effort has been directed at unveiling how plants protect themselves from invading microbes. Major defense hormone signaling pathways have been characterized, the identity of many immune response-triggering molecules as well as many of their receptors have been determined, and the mechanisms of pathogen-host arms race are being studied. In recent years, evidence for a new layer of plant innate immunity involving transition metals has been brought forward. This would link plant metal nutrition with plant immune responses and open up possible new strategies for pathogen control involving metal fertilizers instead of pesticides. In this review, we outline our current understanding of metal-mediated plant immune response and indicate the future avenues of exploration of this topic.","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"32 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.20366","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding how plants fend-off invading microbes is essential for food security and the economy of large parts of the world. Consequently, a sustained and dedicated effort has been directed at unveiling how plants protect themselves from invading microbes. Major defense hormone signaling pathways have been characterized, the identity of many immune response-triggering molecules as well as many of their receptors have been determined, and the mechanisms of pathogen-host arms race are being studied. In recent years, evidence for a new layer of plant innate immunity involving transition metals has been brought forward. This would link plant metal nutrition with plant immune responses and open up possible new strategies for pathogen control involving metal fertilizers instead of pesticides. In this review, we outline our current understanding of metal-mediated plant immune response and indicate the future avenues of exploration of this topic.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
New Phytologist
New Phytologist 生物-植物科学
自引率
5.30%
发文量
728
期刊介绍: New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.
期刊最新文献
Combating plant diseases through transition metal allocation The genetic architecture of floral trait divergence between hummingbird- and self-pollinated monkeyflower (Mimulus) species Issue Information Increasing Rubisco as a simple means to enhance photosynthesis and productivity now without lowering nitrogen use efficiency Climate change drives plant diversity attrition at the summit of Mount Kenya
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1