Temperature, pH, and diet interactively affect biosynthesis of polyunsaturated fatty acids in a benthic harpacticoid copepod

IF 3.8 1区 地球科学 Q1 LIMNOLOGY Limnology and Oceanography Pub Date : 2024-12-21 DOI:10.1002/lno.12763
Jens Boyen, María T. Rodríguez, Bruno Vlaeminck, Patrick Fink, Pascal I. Hablützel, Marleen De Troch
{"title":"Temperature, pH, and diet interactively affect biosynthesis of polyunsaturated fatty acids in a benthic harpacticoid copepod","authors":"Jens Boyen, María T. Rodríguez, Bruno Vlaeminck, Patrick Fink, Pascal I. Hablützel, Marleen De Troch","doi":"10.1002/lno.12763","DOIUrl":null,"url":null,"abstract":"Greenhouse gas emissions lead to ocean warming and acidification, negatively impacting marine organisms and their functioning, including long‐chain polyunsaturated fatty acid (LC‐PUFA) production by marine microalgae. Copepods, primary consumers of microalgae, possess a unique capacity for endogenous LC‐PUFA biosynthesis, possibly enabling them to cope with reduced dietary LC‐PUFA availabilities. However, this capacity may be itself impacted by changing oceanographic conditions. In this study, we conducted a laboratory experiment to evaluate the combined effects of warming (+3°C), acidification (−0.4 pH), and dietary LC‐PUFA deficiency on the fatty acid composition and LC‐PUFA biosynthesis (measured by quantitative RT‐PCR) of the benthic harpacticoid copepod <jats:italic>Platychelipus littoralis</jats:italic> (Brady, 1880). We hypothesized increased LC‐PUFA biosynthesis under all drivers compensating for LC‐PUFA reductions. Lipid profiles of copepods exposed to multiple stressors contained shorter‐chained and more saturated fatty acids. While copepods maintained base‐line relative concentrations of the physiologically important LC‐PUFA docosahexaenoic acid (DHA) on an LC‐PUFA deficient diet at ambient temperatures, DHA concentrations decreased significantly with higher temperatures. Expression of the DHA biosynthesis genes Δ4 front‐end desaturase and elovl1a increased under dietary LC‐PUFA deficiency but did not exceed base‐line levels when simultaneously exposed to acidification. Expression of Δ4 front‐end desaturase and multiple elongases correlated positively with C<jats:sub>18</jats:sub> precursor concentrations and negatively with those of LC‐PUFAs such as DHA, indicating their role as LC‐PUFA biosynthesis enzymes. Overall, our findings suggest that ocean warming and acidification may impede benthic copepods' LC‐PUFA biosynthesis capacity under reduced dietary inputs, limiting their contribution toward global LC‐PUFA availability for higher trophic levels.","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":"29 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/lno.12763","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Greenhouse gas emissions lead to ocean warming and acidification, negatively impacting marine organisms and their functioning, including long‐chain polyunsaturated fatty acid (LC‐PUFA) production by marine microalgae. Copepods, primary consumers of microalgae, possess a unique capacity for endogenous LC‐PUFA biosynthesis, possibly enabling them to cope with reduced dietary LC‐PUFA availabilities. However, this capacity may be itself impacted by changing oceanographic conditions. In this study, we conducted a laboratory experiment to evaluate the combined effects of warming (+3°C), acidification (−0.4 pH), and dietary LC‐PUFA deficiency on the fatty acid composition and LC‐PUFA biosynthesis (measured by quantitative RT‐PCR) of the benthic harpacticoid copepod Platychelipus littoralis (Brady, 1880). We hypothesized increased LC‐PUFA biosynthesis under all drivers compensating for LC‐PUFA reductions. Lipid profiles of copepods exposed to multiple stressors contained shorter‐chained and more saturated fatty acids. While copepods maintained base‐line relative concentrations of the physiologically important LC‐PUFA docosahexaenoic acid (DHA) on an LC‐PUFA deficient diet at ambient temperatures, DHA concentrations decreased significantly with higher temperatures. Expression of the DHA biosynthesis genes Δ4 front‐end desaturase and elovl1a increased under dietary LC‐PUFA deficiency but did not exceed base‐line levels when simultaneously exposed to acidification. Expression of Δ4 front‐end desaturase and multiple elongases correlated positively with C18 precursor concentrations and negatively with those of LC‐PUFAs such as DHA, indicating their role as LC‐PUFA biosynthesis enzymes. Overall, our findings suggest that ocean warming and acidification may impede benthic copepods' LC‐PUFA biosynthesis capacity under reduced dietary inputs, limiting their contribution toward global LC‐PUFA availability for higher trophic levels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Limnology and Oceanography
Limnology and Oceanography 地学-海洋学
CiteScore
8.80
自引率
6.70%
发文量
254
审稿时长
3 months
期刊介绍: Limnology and Oceanography (L&O; print ISSN 0024-3590, online ISSN 1939-5590) publishes original articles, including scholarly reviews, about all aspects of limnology and oceanography. The journal''s unifying theme is the understanding of aquatic systems. Submissions are judged on the originality of their data, interpretations, and ideas, and on the degree to which they can be generalized beyond the particular aquatic system examined. Laboratory and modeling studies must demonstrate relevance to field environments; typically this means that they are bolstered by substantial "real-world" data. Few purely theoretical or purely empirical papers are accepted for review.
期刊最新文献
Identifying and quantifying unexpected deep zooplankton diel vertical migration in a large deep lake Temperature, pH, and diet interactively affect biosynthesis of polyunsaturated fatty acids in a benthic harpacticoid copepod Distinct phytoplankton assemblages underlie hotspots of primary production in the eastern North Pacific Ocean Propagules go with the flow: Near‐field particle dispersion in reaches with different hydrodynamic conditions Stream bryophytes promote “cryptic” productivity in highly oligotrophic headwaters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1