Valeria Jimenez, Sebastian Sudek, Charlotte Eckmann, Charles Bachy, Camille Poirier, Fabian Wittmers, Alyson E. Santoro, Michael J. Follows, Francisco P. Chavez, Irina Shilova, Alexandra Z. Worden
{"title":"Distinct phytoplankton assemblages underlie hotspots of primary production in the eastern North Pacific Ocean","authors":"Valeria Jimenez, Sebastian Sudek, Charlotte Eckmann, Charles Bachy, Camille Poirier, Fabian Wittmers, Alyson E. Santoro, Michael J. Follows, Francisco P. Chavez, Irina Shilova, Alexandra Z. Worden","doi":"10.1002/lno.12771","DOIUrl":null,"url":null,"abstract":"Marine eastern boundary current ecosystems, such as the California Current System (CCS), involve productive, mesotrophic transition zones. The CCS exhibits highly variable primary production (PP), yet factors driving the variability and underlying phytoplankton communities remain poorly understood. We integrated physicochemical and biological data from surface waters sampled during 10 CCS expeditions, spanning 13 yr, and resolved regimes with distinct phytoplankton communities. Additional to an oligotrophic regime (OR), mesotrophic waters beyond the coastal area partitioned into Meso‐High and Meso‐Low regimes, differing in nitrate concentrations and PP. The OR was dominated by <jats:italic>Prochlorococcus</jats:italic> High‐Light I (HLI), and eukaryotic phytoplankton were largely predatory mixotrophs. Eukaryotes dominated Meso‐Low and Meso‐High phytoplankton biomass. Within the Meso‐Low, <jats:italic>Pelagomonas calceolata</jats:italic> was important, and <jats:italic>Prochlorococcus</jats:italic> Low‐Light I (LLI) rose in prominence. In the Meso‐High, the picoprasinophyte <jats:italic>Ostreococcus lucimarinus</jats:italic> was abundant, and <jats:italic>Synechococcus</jats:italic> Clade IV was notable. The Meso‐High exhibited the highest PP (38 ± 16 mg C m<jats:sup>−3</jats:sup> d<jats:sup>−1</jats:sup>; <jats:italic>p</jats:italic> < 0.01) and higher growth rates for photosynthetic eukaryotes (0.84 ± 0.02 d<jats:sup>−1</jats:sup>) than for <jats:italic>Prochlorococcus</jats:italic> (0.61 ± 0.01 d<jats:sup>−1</jats:sup>) and <jats:italic>Synechococcus</jats:italic> (0.31 ± 0.05 d<jats:sup>−1</jats:sup>). An experiment simulating seasonal oligotrophic seawater intrusion into the Meso‐High resulted in growth rates reaching 1.18 ± 0.10 d<jats:sup>−1</jats:sup> (<jats:italic>O. lucimarinus</jats:italic>), 0.75 ± 0.21 d<jats:sup>−1</jats:sup> (<jats:italic>Prochlorococcus</jats:italic> LLI), and 0.50 ± 0.04 d<jats:sup>−1</jats:sup> (<jats:italic>Synechococcus</jats:italic> EPC2). Thus, variable PP is underpinned by distinct phytoplankton communities across CCS mesotrophic regimes, and their dynamic nature is influenced by the rapidity with which specific taxa respond to changing environmental conditions or possibly transient nutrient release from viral encounters. Future work should assess whether these dynamics are consistent across eastern boundary current ecosystems and over temporal variations.","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":"7 6 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/lno.12771","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Marine eastern boundary current ecosystems, such as the California Current System (CCS), involve productive, mesotrophic transition zones. The CCS exhibits highly variable primary production (PP), yet factors driving the variability and underlying phytoplankton communities remain poorly understood. We integrated physicochemical and biological data from surface waters sampled during 10 CCS expeditions, spanning 13 yr, and resolved regimes with distinct phytoplankton communities. Additional to an oligotrophic regime (OR), mesotrophic waters beyond the coastal area partitioned into Meso‐High and Meso‐Low regimes, differing in nitrate concentrations and PP. The OR was dominated by Prochlorococcus High‐Light I (HLI), and eukaryotic phytoplankton were largely predatory mixotrophs. Eukaryotes dominated Meso‐Low and Meso‐High phytoplankton biomass. Within the Meso‐Low, Pelagomonas calceolata was important, and Prochlorococcus Low‐Light I (LLI) rose in prominence. In the Meso‐High, the picoprasinophyte Ostreococcus lucimarinus was abundant, and Synechococcus Clade IV was notable. The Meso‐High exhibited the highest PP (38 ± 16 mg C m−3 d−1; p < 0.01) and higher growth rates for photosynthetic eukaryotes (0.84 ± 0.02 d−1) than for Prochlorococcus (0.61 ± 0.01 d−1) and Synechococcus (0.31 ± 0.05 d−1). An experiment simulating seasonal oligotrophic seawater intrusion into the Meso‐High resulted in growth rates reaching 1.18 ± 0.10 d−1 (O. lucimarinus), 0.75 ± 0.21 d−1 (Prochlorococcus LLI), and 0.50 ± 0.04 d−1 (Synechococcus EPC2). Thus, variable PP is underpinned by distinct phytoplankton communities across CCS mesotrophic regimes, and their dynamic nature is influenced by the rapidity with which specific taxa respond to changing environmental conditions or possibly transient nutrient release from viral encounters. Future work should assess whether these dynamics are consistent across eastern boundary current ecosystems and over temporal variations.
期刊介绍:
Limnology and Oceanography (L&O; print ISSN 0024-3590, online ISSN 1939-5590) publishes original articles, including scholarly reviews, about all aspects of limnology and oceanography. The journal''s unifying theme is the understanding of aquatic systems. Submissions are judged on the originality of their data, interpretations, and ideas, and on the degree to which they can be generalized beyond the particular aquatic system examined. Laboratory and modeling studies must demonstrate relevance to field environments; typically this means that they are bolstered by substantial "real-world" data. Few purely theoretical or purely empirical papers are accepted for review.