Eric Jianfeng Cheng, Huanan Duan, Michael J. Wang, Eric Kazyak, Hirokazu Munakata, Regina Garcia-Mendez, Bo Gao, Hanyu Huo, Tao Zhang, Fei Chen, Ryoji Inada, Kohei Miyazaki, Saneyuki Ohno, Hidemi Kato, Shin-ichi Orimo, Venkataraman Thangadurai, Takeshi Abe, Kiyoshi Kanamura
{"title":"Li-Stuffed Garnet Solid Electrolytes: Current Status, Challenges, and Perspectives for Practical","authors":"Eric Jianfeng Cheng, Huanan Duan, Michael J. Wang, Eric Kazyak, Hirokazu Munakata, Regina Garcia-Mendez, Bo Gao, Hanyu Huo, Tao Zhang, Fei Chen, Ryoji Inada, Kohei Miyazaki, Saneyuki Ohno, Hidemi Kato, Shin-ichi Orimo, Venkataraman Thangadurai, Takeshi Abe, Kiyoshi Kanamura","doi":"10.1016/j.ensm.2024.103970","DOIUrl":null,"url":null,"abstract":"Solid-state Li-metal batteries have gained considerable attention for next-generation energy storage because of their potential high energy densities and improved safety. Solid electrolytes are critical to the development of solid-state Li-metal batteries. While various solid electrolytes exhibit fast-ion conductivity, garnet-type oxides are among the few that show good chemical stability against Li metal. In addition, their high oxidation stability allows the use of high-voltage cathodes. However, the practical application of garnet solid electrolytes faces severe challenges: 1) difficulty in sintering thin and large-area garnet solid electrolytes, 2) large interfacial resistance between garnet electrolytes and electrode materials, and 3) Li dendrite growth. This review primarily summarizes recent advances in garnet-type solid electrolytes and emphasizes the key challenges hindering their practical application in Li-metal batteries. Based on a comprehensive literature survey and our studies, the optimization of crystal structure and ionic conductivity in Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> (LLZO) is nearly complete. The focus of the field is shifting from high-temperature sintered thick pellets to low-temperature processed thin and flexible LLZO-based organic/inorganic sheet electrolytes, which are more promising for commercialization. Additional research is needed to fully understand the mechanics, interface behavior, Li-ion pathway, and manufacturability of castable LLZO-based sheet electrolytes. In terms of cell energy density, the gravimetric energy density of polycrystalline LLZO-based all-solid-state Li-metal pouch cells is estimated to reach only 272 Wh kg<sup>-1</sup> under ideal conditions.","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"88 1","pages":""},"PeriodicalIF":18.9000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ensm.2024.103970","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Solid-state Li-metal batteries have gained considerable attention for next-generation energy storage because of their potential high energy densities and improved safety. Solid electrolytes are critical to the development of solid-state Li-metal batteries. While various solid electrolytes exhibit fast-ion conductivity, garnet-type oxides are among the few that show good chemical stability against Li metal. In addition, their high oxidation stability allows the use of high-voltage cathodes. However, the practical application of garnet solid electrolytes faces severe challenges: 1) difficulty in sintering thin and large-area garnet solid electrolytes, 2) large interfacial resistance between garnet electrolytes and electrode materials, and 3) Li dendrite growth. This review primarily summarizes recent advances in garnet-type solid electrolytes and emphasizes the key challenges hindering their practical application in Li-metal batteries. Based on a comprehensive literature survey and our studies, the optimization of crystal structure and ionic conductivity in Li7La3Zr2O12 (LLZO) is nearly complete. The focus of the field is shifting from high-temperature sintered thick pellets to low-temperature processed thin and flexible LLZO-based organic/inorganic sheet electrolytes, which are more promising for commercialization. Additional research is needed to fully understand the mechanics, interface behavior, Li-ion pathway, and manufacturability of castable LLZO-based sheet electrolytes. In terms of cell energy density, the gravimetric energy density of polycrystalline LLZO-based all-solid-state Li-metal pouch cells is estimated to reach only 272 Wh kg-1 under ideal conditions.
期刊介绍:
Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field.
Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy.
Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.