Developing Dual-Responsive Quinolinium Prodrugs of 8-Hydroxyquinoline By Harnessing the Dual Chelating Sites

IF 6 2区 医学 Q1 CHEMISTRY, MEDICINAL European Journal of Medicinal Chemistry Pub Date : 2024-12-20 DOI:10.1016/j.ejmech.2024.117196
Xueyan Yao, Junjiao Wang, Jie Liu, Chunjing Yu, Jing Hu, Xue Wang, Junjie Fu, Jian Yin
{"title":"Developing Dual-Responsive Quinolinium Prodrugs of 8-Hydroxyquinoline By Harnessing the Dual Chelating Sites","authors":"Xueyan Yao, Junjiao Wang, Jie Liu, Chunjing Yu, Jing Hu, Xue Wang, Junjie Fu, Jian Yin","doi":"10.1016/j.ejmech.2024.117196","DOIUrl":null,"url":null,"abstract":"The bidentate metal ion chelator 8-hydroxyquinoline (8-HQ) demonstrates significant potential in anticancer therapy but is hindered by adverse effects due to nonspecific chelation in normal tissues. The phenolic hydroxyl oxygen of 8-HQ has been extensively exploited to develop <em>O</em>-masked 8-HQ prodrugs aimed at achieving on-demand chelation. However, the equally crucial quinoline nitrogen for chelation remains underutilized. By alkylating the quinoline nitrogen of 8-HQ, we synthesized a series of <em>N</em>-masked quinolinium (QUM) prodrugs that release 8-HQ upon activation by various stimuli. Comprehensive <em>in vitro</em> and <em>in vivo</em> studies were conducted with QUM-1 and QUM-4, which are activated by H<sub>2</sub>O<sub>2</sub> and β-glucosidase, respectively. Both QUM-1 and QUM-4 exhibit improved cancer cell selectivity compared to 8-HQ or the <em>O</em>-masked isomeric prodrug, attributed to unique properties such as enhanced mitochondrial targeting and increased glucose transporter-mediated cellular uptake. Additionally, by leveraging both chelating sites, we constructed dual-masked 8-HQ prodrugs that are activated non-sequentially by two stimuli to release 8-HQ. QUM-5 demonstrates anticancer activity upon activation by UV/H<sub>2</sub>O<sub>2</sub> and shows improved safety in mice compared to 8-HQ. Our research presents novel applications for the construction of quaternary ammonium prodrugs utilizing aromatic tertiary amines and underscores the potential of dual-responsive prochelators for targeted cancer therapy.","PeriodicalId":314,"journal":{"name":"European Journal of Medicinal Chemistry","volume":"24 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejmech.2024.117196","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

The bidentate metal ion chelator 8-hydroxyquinoline (8-HQ) demonstrates significant potential in anticancer therapy but is hindered by adverse effects due to nonspecific chelation in normal tissues. The phenolic hydroxyl oxygen of 8-HQ has been extensively exploited to develop O-masked 8-HQ prodrugs aimed at achieving on-demand chelation. However, the equally crucial quinoline nitrogen for chelation remains underutilized. By alkylating the quinoline nitrogen of 8-HQ, we synthesized a series of N-masked quinolinium (QUM) prodrugs that release 8-HQ upon activation by various stimuli. Comprehensive in vitro and in vivo studies were conducted with QUM-1 and QUM-4, which are activated by H2O2 and β-glucosidase, respectively. Both QUM-1 and QUM-4 exhibit improved cancer cell selectivity compared to 8-HQ or the O-masked isomeric prodrug, attributed to unique properties such as enhanced mitochondrial targeting and increased glucose transporter-mediated cellular uptake. Additionally, by leveraging both chelating sites, we constructed dual-masked 8-HQ prodrugs that are activated non-sequentially by two stimuli to release 8-HQ. QUM-5 demonstrates anticancer activity upon activation by UV/H2O2 and shows improved safety in mice compared to 8-HQ. Our research presents novel applications for the construction of quaternary ammonium prodrugs utilizing aromatic tertiary amines and underscores the potential of dual-responsive prochelators for targeted cancer therapy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.70
自引率
9.00%
发文量
863
审稿时长
29 days
期刊介绍: The European Journal of Medicinal Chemistry is a global journal that publishes studies on all aspects of medicinal chemistry. It provides a medium for publication of original papers and also welcomes critical review papers. A typical paper would report on the organic synthesis, characterization and pharmacological evaluation of compounds. Other topics of interest are drug design, QSAR, molecular modeling, drug-receptor interactions, molecular aspects of drug metabolism, prodrug synthesis and drug targeting. The journal expects manuscripts to present the rational for a study, provide insight into the design of compounds or understanding of mechanism, or clarify the targets.
期刊最新文献
The polypharmacy combination of the BCL-2 inhibitor venetoclax (VEN) and the FLT3 inhibitor gilteritinib (GIL) is more active in acute myeloid leukemia cells than novel polypharmacologic BCL-2/FLT3 VEN–GIL hybrid single-molecule inhibitors. Photosensitizer associated with efflux pump inhibitors as a strategy for Photodynamic Therapy against bacterial resistance New Series of 3-Pyridyl-1,3-Thiazoles: In Vitro and In Vivo Anti-Trypanosomatidae Profile, in vitro and in silico Mechanism of Action approach Developing Dual-Responsive Quinolinium Prodrugs of 8-Hydroxyquinoline By Harnessing the Dual Chelating Sites Dodecyl creatine ester, a promising treatment to deliver creatine to neurons, achieves pharmacology efficacy in creatine transporter deficiency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1