Magneto-electric phenomena in atoms and molecules

IF 7.4 1区 物理与天体物理 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Progress in Quantum Electronics Pub Date : 2024-12-04 DOI:10.1016/j.pquantelec.2024.100544
Gregory Smail, Stephen C. Rand
{"title":"Magneto-electric phenomena in atoms and molecules","authors":"Gregory Smail, Stephen C. Rand","doi":"10.1016/j.pquantelec.2024.100544","DOIUrl":null,"url":null,"abstract":"Traditional nonlinear optics emphasizes processes driven by the electric field of light at moderately high intensities while generally ignoring dynamic magnetic effects. High frequency magnetism is generally associated with metamaterials or bulk magneto-electric solids. However, magneto-electric interactions can achieve magnetic response at the molecular level in essentially all dielectric materials. Classical and quantum models of nonlinear interactions driven by the combined forces of optical electric and magnetic fields are reviewed in this paper. Experimental conditions are also identified under which electric and magnetic field-driven interactions induce enhanced magnetic dipole response as well as a longitudinal Hall effect. Several mechanisms that account for dynamic enhancement of magnetic response are identified, including a torque-driven exchange of orbital angular momentum for rotational angular momentum. Experiments on this topic are summarized, and connections are established between electric and magneto-electric susceptibilities. The review concludes by anticipating novel photonic technology reliant on dynamic magneto-electric effects.","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"8 8 1","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Quantum Electronics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1016/j.pquantelec.2024.100544","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional nonlinear optics emphasizes processes driven by the electric field of light at moderately high intensities while generally ignoring dynamic magnetic effects. High frequency magnetism is generally associated with metamaterials or bulk magneto-electric solids. However, magneto-electric interactions can achieve magnetic response at the molecular level in essentially all dielectric materials. Classical and quantum models of nonlinear interactions driven by the combined forces of optical electric and magnetic fields are reviewed in this paper. Experimental conditions are also identified under which electric and magnetic field-driven interactions induce enhanced magnetic dipole response as well as a longitudinal Hall effect. Several mechanisms that account for dynamic enhancement of magnetic response are identified, including a torque-driven exchange of orbital angular momentum for rotational angular momentum. Experiments on this topic are summarized, and connections are established between electric and magneto-electric susceptibilities. The review concludes by anticipating novel photonic technology reliant on dynamic magneto-electric effects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Progress in Quantum Electronics
Progress in Quantum Electronics 工程技术-工程:电子与电气
CiteScore
18.50
自引率
0.00%
发文量
23
审稿时长
150 days
期刊介绍: Progress in Quantum Electronics, established in 1969, is an esteemed international review journal dedicated to sharing cutting-edge topics in quantum electronics and its applications. The journal disseminates papers covering theoretical and experimental aspects of contemporary research, including advances in physics, technology, and engineering relevant to quantum electronics. It also encourages interdisciplinary research, welcoming papers that contribute new knowledge in areas such as bio and nano-related work.
期刊最新文献
Magneto-electric phenomena in atoms and molecules Elemental segregation and dimensional separation in halide perovskite light-emitting diodes III-nitride semiconductor membrane electronics and optoelectronics for heterogeneous integration Editorial Board Nonlinear photocurrent in quantum materials for broadband photodetection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1