{"title":"A delay-resistant cloud supported control model for Optimizing vehicle platooning operation","authors":"Ying Liu, Qing Xu, Guangwei Wang, Yi Liu, Mengchi Cai, Chaoyi Chen, Jianqiang Wang, Guodong Yin","doi":"10.1016/j.tre.2024.103928","DOIUrl":null,"url":null,"abstract":"The cloud supported system can effectively optimize vehicle platooning operation due to its centralized control mode in the cloud, but due to its wireless transmission characteristics and the complexity of the mixed traffic environment, the controlled traffic units will inevitably suffer from time delays and outside disturbances, which can lead to serious safety issues. To address the problem of platooning stable operation under stochastic road slope and bi-directional time-varying delay, a novel delay-resistant cloud supported control model is proposed in this paper. First, the mixed vehicle platoon system under the vehicle–road-cloud integrated architecture is established, considering the influence of driving intentions’ uncertainty of human-driven vehicles (HDVs), random variations of road slope, and bi-direction time-varying delay. Second, an exponential mean-square stable delay-dependent controller is designed to stabilize the cloud supported platoon system subject on the basis of robust <ce:italic>H<ce:inf loc=\"post\">∞</ce:inf></ce:italic> approach and Lyapunov-Krasovskii theorem. In addition, the inner-vehicle stability of time-delay mixed platoon system is analyzed using the enhanced free weighting matrix (EFWM) approach along with the improved cone complementarity linearization (ICCL) algorithm. Third, a <mml:math altimg=\"si1.svg\"><mml:msub><mml:mtext mathvariant=\"script\">L</mml:mtext><mml:mn>2</mml:mn></mml:msub></mml:math> string stability criterion is defined to inhibit the increasement of perturbances as they propagate along the platoon. Finally, real traffic data as well as different driving conditions are adopted to verify the control performance of the presented method. Compared to traditional vehicle platoon control method, the presented controller can achieve better disturbance suppression and tracking performance under stochastic interferences and bi-direction time-varying delay, the distance error between adjacent vehicles is less than 0.44 m at low and medium speeds.","PeriodicalId":49418,"journal":{"name":"Transportation Research Part E-Logistics and Transportation Review","volume":"268 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part E-Logistics and Transportation Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tre.2024.103928","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The cloud supported system can effectively optimize vehicle platooning operation due to its centralized control mode in the cloud, but due to its wireless transmission characteristics and the complexity of the mixed traffic environment, the controlled traffic units will inevitably suffer from time delays and outside disturbances, which can lead to serious safety issues. To address the problem of platooning stable operation under stochastic road slope and bi-directional time-varying delay, a novel delay-resistant cloud supported control model is proposed in this paper. First, the mixed vehicle platoon system under the vehicle–road-cloud integrated architecture is established, considering the influence of driving intentions’ uncertainty of human-driven vehicles (HDVs), random variations of road slope, and bi-direction time-varying delay. Second, an exponential mean-square stable delay-dependent controller is designed to stabilize the cloud supported platoon system subject on the basis of robust H∞ approach and Lyapunov-Krasovskii theorem. In addition, the inner-vehicle stability of time-delay mixed platoon system is analyzed using the enhanced free weighting matrix (EFWM) approach along with the improved cone complementarity linearization (ICCL) algorithm. Third, a L2 string stability criterion is defined to inhibit the increasement of perturbances as they propagate along the platoon. Finally, real traffic data as well as different driving conditions are adopted to verify the control performance of the presented method. Compared to traditional vehicle platoon control method, the presented controller can achieve better disturbance suppression and tracking performance under stochastic interferences and bi-direction time-varying delay, the distance error between adjacent vehicles is less than 0.44 m at low and medium speeds.
期刊介绍:
Transportation Research Part E: Logistics and Transportation Review is a reputable journal that publishes high-quality articles covering a wide range of topics in the field of logistics and transportation research. The journal welcomes submissions on various subjects, including transport economics, transport infrastructure and investment appraisal, evaluation of public policies related to transportation, empirical and analytical studies of logistics management practices and performance, logistics and operations models, and logistics and supply chain management.
Part E aims to provide informative and well-researched articles that contribute to the understanding and advancement of the field. The content of the journal is complementary to other prestigious journals in transportation research, such as Transportation Research Part A: Policy and Practice, Part B: Methodological, Part C: Emerging Technologies, Part D: Transport and Environment, and Part F: Traffic Psychology and Behaviour. Together, these journals form a comprehensive and cohesive reference for current research in transportation science.