Online configuration of reservable parking spaces: An agent-based deep reinforcement learning approach

Minghui Xie, Siyu Lin, Sen Wei, Xinying Zhang, Yao Wang, Yuanqing Wang
{"title":"Online configuration of reservable parking spaces: An agent-based deep reinforcement learning approach","authors":"Minghui Xie, Siyu Lin, Sen Wei, Xinying Zhang, Yao Wang, Yuanqing Wang","doi":"10.1016/j.tre.2024.103887","DOIUrl":null,"url":null,"abstract":"Unevenly distributed parking demand frequently leads to the overconsumption of popular parking lots, resulting in increased regional travel costs and traffic congestion. Configuring reservable parking spaces in parking lots based on online reservation systems is a prevalent solution to alleviate these issues. However, existing static configuration methods are inadequate for addressing time-varying parking demand, presenting significant challenges in determining the optimal number of reservable parking spaces across different parking lots over time. Thus, to address these challenges and reduce the total travel time in popular reservation-enabled management areas, this paper proposes a dynamic configuration model for reservable parking spaces utilizing agent-based deep reinforcement learning. The model can dynamically schedule the ratio of reservable parking spaces in an environment where reserved users and non-reserved users coexist, thereby influencing parking users’ choice behavior and balancing demand distribution. Experimental results on a real-world simulator show that, compared to baseline methods, the proposed model can effectively configure reservable parking spaces online. It conservatively reduces the total travel time by 21.4% and alleviates parking cruising and waiting in the management area. This approach is prospective for smart parking management.","PeriodicalId":49418,"journal":{"name":"Transportation Research Part E-Logistics and Transportation Review","volume":"26 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part E-Logistics and Transportation Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tre.2024.103887","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Unevenly distributed parking demand frequently leads to the overconsumption of popular parking lots, resulting in increased regional travel costs and traffic congestion. Configuring reservable parking spaces in parking lots based on online reservation systems is a prevalent solution to alleviate these issues. However, existing static configuration methods are inadequate for addressing time-varying parking demand, presenting significant challenges in determining the optimal number of reservable parking spaces across different parking lots over time. Thus, to address these challenges and reduce the total travel time in popular reservation-enabled management areas, this paper proposes a dynamic configuration model for reservable parking spaces utilizing agent-based deep reinforcement learning. The model can dynamically schedule the ratio of reservable parking spaces in an environment where reserved users and non-reserved users coexist, thereby influencing parking users’ choice behavior and balancing demand distribution. Experimental results on a real-world simulator show that, compared to baseline methods, the proposed model can effectively configure reservable parking spaces online. It conservatively reduces the total travel time by 21.4% and alleviates parking cruising and waiting in the management area. This approach is prospective for smart parking management.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在线配置可预订停车位:一种基于智能体的深度强化学习方法
停车需求的不均匀分布往往会导致热门停车场的过度使用,从而导致区域出行成本的增加和交通拥堵。基于在线预约系统在停车场配置可预约车位是缓解这些问题的普遍解决方案。然而,现有的静态配置方法不足以解决随时间变化的停车需求,在确定不同停车场随时间变化的最佳可保留停车位数量方面存在重大挑战。因此,为了解决这些挑战并减少受欢迎的启用预订管理区域的总旅行时间,本文提出了一种利用基于智能体的深度强化学习的可预订停车位动态配置模型。该模型可以动态调度预留用户和非预留用户共存环境下的可预留车位比例,从而影响停车用户的选择行为,平衡需求分配。仿真结果表明,与基线方法相比,该模型能有效地在线配置可预留车位。它保守地减少了21.4%的总出行时间,并减轻了管理区域的停车巡航和等待。这种方法在智能停车管理中是有前景的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.20
自引率
16.00%
发文量
285
审稿时长
62 days
期刊介绍: Transportation Research Part E: Logistics and Transportation Review is a reputable journal that publishes high-quality articles covering a wide range of topics in the field of logistics and transportation research. The journal welcomes submissions on various subjects, including transport economics, transport infrastructure and investment appraisal, evaluation of public policies related to transportation, empirical and analytical studies of logistics management practices and performance, logistics and operations models, and logistics and supply chain management. Part E aims to provide informative and well-researched articles that contribute to the understanding and advancement of the field. The content of the journal is complementary to other prestigious journals in transportation research, such as Transportation Research Part A: Policy and Practice, Part B: Methodological, Part C: Emerging Technologies, Part D: Transport and Environment, and Part F: Traffic Psychology and Behaviour. Together, these journals form a comprehensive and cohesive reference for current research in transportation science.
期刊最新文献
Multi-agent deep reinforcement learning-based truck-drone collaborative routing with dynamic emergency response Enhancing resilience in supply chains through resource orchestration and AI assimilation: An empirical exploration An interpretable machine learning framework for enhancing road transportation safety Shared use of dedicated lanes by connected and automated buses and private vehicles: A multi-green-wave signal control scheme Is operational flexibility a viable strategy during major supply chain disruptions? Evidence from the COVID-19 pandemic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1