Minghui Xie, Siyu Lin, Sen Wei, Xinying Zhang, Yao Wang, Yuanqing Wang
{"title":"Online configuration of reservable parking spaces: An agent-based deep reinforcement learning approach","authors":"Minghui Xie, Siyu Lin, Sen Wei, Xinying Zhang, Yao Wang, Yuanqing Wang","doi":"10.1016/j.tre.2024.103887","DOIUrl":null,"url":null,"abstract":"Unevenly distributed parking demand frequently leads to the overconsumption of popular parking lots, resulting in increased regional travel costs and traffic congestion. Configuring reservable parking spaces in parking lots based on online reservation systems is a prevalent solution to alleviate these issues. However, existing static configuration methods are inadequate for addressing time-varying parking demand, presenting significant challenges in determining the optimal number of reservable parking spaces across different parking lots over time. Thus, to address these challenges and reduce the total travel time in popular reservation-enabled management areas, this paper proposes a dynamic configuration model for reservable parking spaces utilizing agent-based deep reinforcement learning. The model can dynamically schedule the ratio of reservable parking spaces in an environment where reserved users and non-reserved users coexist, thereby influencing parking users’ choice behavior and balancing demand distribution. Experimental results on a real-world simulator show that, compared to baseline methods, the proposed model can effectively configure reservable parking spaces online. It conservatively reduces the total travel time by 21.4% and alleviates parking cruising and waiting in the management area. This approach is prospective for smart parking management.","PeriodicalId":49418,"journal":{"name":"Transportation Research Part E-Logistics and Transportation Review","volume":"26 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part E-Logistics and Transportation Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tre.2024.103887","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Unevenly distributed parking demand frequently leads to the overconsumption of popular parking lots, resulting in increased regional travel costs and traffic congestion. Configuring reservable parking spaces in parking lots based on online reservation systems is a prevalent solution to alleviate these issues. However, existing static configuration methods are inadequate for addressing time-varying parking demand, presenting significant challenges in determining the optimal number of reservable parking spaces across different parking lots over time. Thus, to address these challenges and reduce the total travel time in popular reservation-enabled management areas, this paper proposes a dynamic configuration model for reservable parking spaces utilizing agent-based deep reinforcement learning. The model can dynamically schedule the ratio of reservable parking spaces in an environment where reserved users and non-reserved users coexist, thereby influencing parking users’ choice behavior and balancing demand distribution. Experimental results on a real-world simulator show that, compared to baseline methods, the proposed model can effectively configure reservable parking spaces online. It conservatively reduces the total travel time by 21.4% and alleviates parking cruising and waiting in the management area. This approach is prospective for smart parking management.
期刊介绍:
Transportation Research Part E: Logistics and Transportation Review is a reputable journal that publishes high-quality articles covering a wide range of topics in the field of logistics and transportation research. The journal welcomes submissions on various subjects, including transport economics, transport infrastructure and investment appraisal, evaluation of public policies related to transportation, empirical and analytical studies of logistics management practices and performance, logistics and operations models, and logistics and supply chain management.
Part E aims to provide informative and well-researched articles that contribute to the understanding and advancement of the field. The content of the journal is complementary to other prestigious journals in transportation research, such as Transportation Research Part A: Policy and Practice, Part B: Methodological, Part C: Emerging Technologies, Part D: Transport and Environment, and Part F: Traffic Psychology and Behaviour. Together, these journals form a comprehensive and cohesive reference for current research in transportation science.