{"title":"Experimental study on a smoke airflow CO filtration and elimination device based on particulate Co3O4 catalyst","authors":"Sheng He, Shuo Gao, Jia Li, Yitao Yu, Jianguo Wu, Jiaxin Shi, Xiao Wang, Xiaoyu Chen, Fubao Zhou","doi":"10.1016/j.psep.2024.12.062","DOIUrl":null,"url":null,"abstract":"The large amounts of CO gas produced during tunnel blasting operations pose a serious threat to safe production, and finding an effective method to eliminate CO from smoke and airflow remains a significant challenge. Based on the characteristics of thermal regeneration and the principle of catalytic oxidation, we designed a CO filtration and elimination device for smoke and airflow that can perform in-situ thermal regeneration. The device eliminates CO by drawing it from the smoke and airflow and bringing it into contact with catalytic particles. The Co<ce:inf loc=\"post\">3</ce:inf>O<ce:inf loc=\"post\">4</ce:inf> catalyst, synthesized through particle forming processes, exhibits good strength and catalytic activity, meeting the application requirements of the device. Catalyst regeneration is accomplished through in-situ heating and hot air purging. Multiple modular testing experiments validated the feasibility of the particle-based catalyst device. Subsequently, a full set of small-scale prototypes was developed, and CO concentration surge experiments demonstrated that under ambient humidity conditions of 61.2 %-68.5 %, the prototype achieved a CO elimination rate of 72.59 % after 500 seconds. Finally, full-scale tests in the Dalian Bay subsea tunnel further verified its practical performance, with CO elimination rates exceeding 71.4 % in two elimination cycles and a regeneration rate of over 98 %. The test results indicate that the smoke and airflow CO filtration and elimination device can effectively remove CO from smoke and airflow, and holds great potential for widespread application in tunnel blasting operations.","PeriodicalId":20743,"journal":{"name":"Process Safety and Environmental Protection","volume":"24 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Safety and Environmental Protection","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.psep.2024.12.062","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The large amounts of CO gas produced during tunnel blasting operations pose a serious threat to safe production, and finding an effective method to eliminate CO from smoke and airflow remains a significant challenge. Based on the characteristics of thermal regeneration and the principle of catalytic oxidation, we designed a CO filtration and elimination device for smoke and airflow that can perform in-situ thermal regeneration. The device eliminates CO by drawing it from the smoke and airflow and bringing it into contact with catalytic particles. The Co3O4 catalyst, synthesized through particle forming processes, exhibits good strength and catalytic activity, meeting the application requirements of the device. Catalyst regeneration is accomplished through in-situ heating and hot air purging. Multiple modular testing experiments validated the feasibility of the particle-based catalyst device. Subsequently, a full set of small-scale prototypes was developed, and CO concentration surge experiments demonstrated that under ambient humidity conditions of 61.2 %-68.5 %, the prototype achieved a CO elimination rate of 72.59 % after 500 seconds. Finally, full-scale tests in the Dalian Bay subsea tunnel further verified its practical performance, with CO elimination rates exceeding 71.4 % in two elimination cycles and a regeneration rate of over 98 %. The test results indicate that the smoke and airflow CO filtration and elimination device can effectively remove CO from smoke and airflow, and holds great potential for widespread application in tunnel blasting operations.
期刊介绍:
The Process Safety and Environmental Protection (PSEP) journal is a leading international publication that focuses on the publication of high-quality, original research papers in the field of engineering, specifically those related to the safety of industrial processes and environmental protection. The journal encourages submissions that present new developments in safety and environmental aspects, particularly those that show how research findings can be applied in process engineering design and practice.
PSEP is particularly interested in research that brings fresh perspectives to established engineering principles, identifies unsolved problems, or suggests directions for future research. The journal also values contributions that push the boundaries of traditional engineering and welcomes multidisciplinary papers.
PSEP's articles are abstracted and indexed by a range of databases and services, which helps to ensure that the journal's research is accessible and recognized in the academic and professional communities. These databases include ANTE, Chemical Abstracts, Chemical Hazards in Industry, Current Contents, Elsevier Engineering Information database, Pascal Francis, Web of Science, Scopus, Engineering Information Database EnCompass LIT (Elsevier), and INSPEC. This wide coverage facilitates the dissemination of the journal's content to a global audience interested in process safety and environmental engineering.