Ayşenur Genç, Ece Ergun, Alper Fitoz, Ömer Kantoğlu, Mahir İnce, Orhan Acar
{"title":"Experimental and theoretical assessment of selected pollutants treated with gamma radiation and hydrogen peroxide","authors":"Ayşenur Genç, Ece Ergun, Alper Fitoz, Ömer Kantoğlu, Mahir İnce, Orhan Acar","doi":"10.1016/j.radphyschem.2024.112473","DOIUrl":null,"url":null,"abstract":"Degradation of ibuprofen, triclosan, diclofenac, and ketoprofen in real wastewater effluent by gamma radiation/hydrogen peroxide was investigated on the basis of removal efficiencies, G-values, and kinetics. Gamma irradiation was performed using a<ce:sup loc=\"post\">60</ce:sup>Co source irradiator in the presence of different concentrations of hydrogen peroxide. The analyses of the pollutants were performed before and after irradiation treatment using a Liquid Chromatography-Mass Spectrometry (LC-MS) system. The addition of 0.5% hydrogen peroxide resulted in an enhanced removal efficiency of the target pollutants (93.92% for ibuprofen, 99.47% for triclosan, 86.65% for diclofenac, and 86.32% for ketoprofen) compared with the performance of the gamma irradiation process alone. The rate constants (k) of ibuprofen, triclosan, diclofenac, and ketoprofen increased by 1.42, 2.38, 1.38, and 3.37 times with 0.5% hydrogen peroxide addition, respectively. Moreover, the 90% decomposition of the target pollutants was achieved at lower doses in the gamma-ray/hydrogen peroxide system in comparison with the gamma treatment without hydrogen peroxide. Fukui functions and dual descriptor were calculated using density functional theory (DFT) to investigate the sensitivity of the target pollutants to hydroxyl radical attacks, to identify the initial reaction pathway, and to predict the degradation by-products. The findings were consistent with literature mechanisms and observed by-products.","PeriodicalId":20861,"journal":{"name":"Radiation Physics and Chemistry","volume":"26 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Physics and Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.radphyschem.2024.112473","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Degradation of ibuprofen, triclosan, diclofenac, and ketoprofen in real wastewater effluent by gamma radiation/hydrogen peroxide was investigated on the basis of removal efficiencies, G-values, and kinetics. Gamma irradiation was performed using a60Co source irradiator in the presence of different concentrations of hydrogen peroxide. The analyses of the pollutants were performed before and after irradiation treatment using a Liquid Chromatography-Mass Spectrometry (LC-MS) system. The addition of 0.5% hydrogen peroxide resulted in an enhanced removal efficiency of the target pollutants (93.92% for ibuprofen, 99.47% for triclosan, 86.65% for diclofenac, and 86.32% for ketoprofen) compared with the performance of the gamma irradiation process alone. The rate constants (k) of ibuprofen, triclosan, diclofenac, and ketoprofen increased by 1.42, 2.38, 1.38, and 3.37 times with 0.5% hydrogen peroxide addition, respectively. Moreover, the 90% decomposition of the target pollutants was achieved at lower doses in the gamma-ray/hydrogen peroxide system in comparison with the gamma treatment without hydrogen peroxide. Fukui functions and dual descriptor were calculated using density functional theory (DFT) to investigate the sensitivity of the target pollutants to hydroxyl radical attacks, to identify the initial reaction pathway, and to predict the degradation by-products. The findings were consistent with literature mechanisms and observed by-products.
期刊介绍:
Radiation Physics and Chemistry is a multidisciplinary journal that provides a medium for publication of substantial and original papers, reviews, and short communications which focus on research and developments involving ionizing radiation in radiation physics, radiation chemistry and radiation processing.
The journal aims to publish papers with significance to an international audience, containing substantial novelty and scientific impact. The Editors reserve the rights to reject, with or without external review, papers that do not meet these criteria. This could include papers that are very similar to previous publications, only with changed target substrates, employed materials, analyzed sites and experimental methods, report results without presenting new insights and/or hypothesis testing, or do not focus on the radiation effects.