{"title":"Dynamical Simulation for Long-Time Relaxation From Metastable States: Quantitative Estimation of Coercive Field and Relaxation Time","authors":"Masamichi Nishino, Seiji Miyashita","doi":"10.1002/ejic.202400458","DOIUrl":null,"url":null,"abstract":"<p>The bistability of spin-transition materials is the origin of their multifunctional properties. It causes hysteresis phenomena, i. e., relaxation from a metastable state, of the spin (electronic) state, magnetization, etc. The collapse of a strong metastable state is a long-time relaxation phenomenon. To study such nonequilibrium dynamical phenomenon, time evolution dynamics analyses are important. However, it is difficult to estimate long-time relaxation phenomena by studying time evolution dynamics simulations due to the limitation of the simulation time. Furthermore, because the relaxation occurs in a stochastic process, a wide distribution of the relaxation time has to be considered in the analysis of the relaxation. To overcome these difficulties, we recently developed two methods for the quantitative estimation of the relaxation time from a metastable magnetic state and of the coercive field. In the first method, the relaxation time and coercive field are estimated using the survival (unrelaxed) probability of the ensemble of systems at each field, which extends the limitation of the simulation time. In the second method, they are estimated from the field-dependent free energy barrier obtained from the survival probability under a sweeping field. These methods are applicable to the estimation of the relaxation time and coercive field of any magnetic particles. In this paper, staring with the Stoner–Wohlfarth model, the difference in the characteristic features of the magnetization reversal dynamics between zero and finite temperatures is discussed. Then, the methods of quantitative estimation of the coercive field and relaxation time are presented. The estimation of them using a neodymium permanent magnet grain was demonstrated with the two methods, and the methodological features and the validity of the estimation were discussed. The present study has a common theme to general metastable states including spin transitions.</p>","PeriodicalId":38,"journal":{"name":"European Journal of Inorganic Chemistry","volume":"27 35","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Inorganic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ejic.202400458","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The bistability of spin-transition materials is the origin of their multifunctional properties. It causes hysteresis phenomena, i. e., relaxation from a metastable state, of the spin (electronic) state, magnetization, etc. The collapse of a strong metastable state is a long-time relaxation phenomenon. To study such nonequilibrium dynamical phenomenon, time evolution dynamics analyses are important. However, it is difficult to estimate long-time relaxation phenomena by studying time evolution dynamics simulations due to the limitation of the simulation time. Furthermore, because the relaxation occurs in a stochastic process, a wide distribution of the relaxation time has to be considered in the analysis of the relaxation. To overcome these difficulties, we recently developed two methods for the quantitative estimation of the relaxation time from a metastable magnetic state and of the coercive field. In the first method, the relaxation time and coercive field are estimated using the survival (unrelaxed) probability of the ensemble of systems at each field, which extends the limitation of the simulation time. In the second method, they are estimated from the field-dependent free energy barrier obtained from the survival probability under a sweeping field. These methods are applicable to the estimation of the relaxation time and coercive field of any magnetic particles. In this paper, staring with the Stoner–Wohlfarth model, the difference in the characteristic features of the magnetization reversal dynamics between zero and finite temperatures is discussed. Then, the methods of quantitative estimation of the coercive field and relaxation time are presented. The estimation of them using a neodymium permanent magnet grain was demonstrated with the two methods, and the methodological features and the validity of the estimation were discussed. The present study has a common theme to general metastable states including spin transitions.
期刊介绍:
The European Journal of Inorganic Chemistry (2019 ISI Impact Factor: 2.529) publishes Full Papers, Communications, and Minireviews from the entire spectrum of inorganic, organometallic, bioinorganic, and solid-state chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
The following journals have been merged to form the two leading journals, European Journal of Inorganic Chemistry and European Journal of Organic Chemistry:
Chemische Berichte
Bulletin des Sociétés Chimiques Belges
Bulletin de la Société Chimique de France
Gazzetta Chimica Italiana
Recueil des Travaux Chimiques des Pays-Bas
Anales de Química
Chimika Chronika
Revista Portuguesa de Química
ACH—Models in Chemistry
Polish Journal of Chemistry
The European Journal of Inorganic Chemistry continues to keep you up-to-date with important inorganic chemistry research results.