{"title":"A Multi-Workflow Scheduling Approach With Explicit Evolutionary Multi-Objective Multi-Task Optimization Algorithm in Cloud Environment","authors":"Qiqi Zhang, Bohui Li, Shaojin Geng, Xingjuan Cai","doi":"10.1002/cpe.8337","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Workflow tasks in the cloud environment are the abstraction and decomposition of large-scale and complex tasks in real-world scenarios, so cloud workflow scheduling problems have important research significance. However, most of the existing cloud workflow scheduling schemes are aimed at a single workflow, and do not make reasonable use of the commonality or complementary knowledge between similar tasks. Moreover, most cloud workflow scheduling models mainly focus on a few objectives such as time or cost, which is not comprehensive enough. Therefore, this paper first proposes a multi-objective cloud workflow scheduling model, which solves the maximum completion time, execution cost and energy consumption as three objectives during task execution. Secondly, to efficiently handle multiple similar cloud workflow scheduling tasks at the same time, this paper treats various cloud workflow scheduling issues as distinct tasks, establishes a multi-task cloud workflow scheduling framework that aims for the same goal while accommodating workflows of differing scales, and a multi-objective evolutionary multi-task optimization algorithm based on elite selection (MOEMT-ES) is designed to solve the above scheduling model. Finally, through algorithm comparison experiments on the CEC2017 evolutionary multi-task optimization competition benchmark problem and multi-workflow test problem, MOEMT-ES shows superior competitiveness.</p>\n </div>","PeriodicalId":55214,"journal":{"name":"Concurrency and Computation-Practice & Experience","volume":"37 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation-Practice & Experience","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpe.8337","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Workflow tasks in the cloud environment are the abstraction and decomposition of large-scale and complex tasks in real-world scenarios, so cloud workflow scheduling problems have important research significance. However, most of the existing cloud workflow scheduling schemes are aimed at a single workflow, and do not make reasonable use of the commonality or complementary knowledge between similar tasks. Moreover, most cloud workflow scheduling models mainly focus on a few objectives such as time or cost, which is not comprehensive enough. Therefore, this paper first proposes a multi-objective cloud workflow scheduling model, which solves the maximum completion time, execution cost and energy consumption as three objectives during task execution. Secondly, to efficiently handle multiple similar cloud workflow scheduling tasks at the same time, this paper treats various cloud workflow scheduling issues as distinct tasks, establishes a multi-task cloud workflow scheduling framework that aims for the same goal while accommodating workflows of differing scales, and a multi-objective evolutionary multi-task optimization algorithm based on elite selection (MOEMT-ES) is designed to solve the above scheduling model. Finally, through algorithm comparison experiments on the CEC2017 evolutionary multi-task optimization competition benchmark problem and multi-workflow test problem, MOEMT-ES shows superior competitiveness.
期刊介绍:
Concurrency and Computation: Practice and Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of:
Parallel and distributed computing;
High-performance computing;
Computational and data science;
Artificial intelligence and machine learning;
Big data applications, algorithms, and systems;
Network science;
Ontologies and semantics;
Security and privacy;
Cloud/edge/fog computing;
Green computing; and
Quantum computing.