{"title":"The Study on Synthesis and Characterization of Insensitive Energetic Materials Based on 5-(5-Nitro-1H-1,2,4-Triazol-3-yl)-1H-Tetrazole","authors":"Chenchen Lin, Pingping Yi, Xiaoyi Yi, Tingwei Wang, Jianguo Zhang, Piao He","doi":"10.1002/poc.4667","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The design and synthesis of insensitive energetic materials are a necessary and challenging work. The synthesis of novel nitrogen-rich salts based on 5-(5-Nitro-1H-1,2,4-triazol-3-yl)-1H-tetrazole (H<sub>2</sub>NTT) has been presented. Structural characterization of these two salts was accomplished by utilizing NMR, MS, IR spectroscopy, and X-ray diffraction. The standard heats of formation were calculated, and the differential scanning calorimetry (DSC) and sensitivity test were carried out. Their detonation performances were estimated by EXPLO 5 program. These newly synthesized salts showed highly positive heat of formation and low sensitivity. It is noteworthy that the diaminoguanidine salt <b>b</b> exhibited good detonation performance superior to traditional explosive TNT (Trinitrotoluene), making it a prospective candidate for insensitive energetic material.</p>\n </div>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"38 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/poc.4667","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
The design and synthesis of insensitive energetic materials are a necessary and challenging work. The synthesis of novel nitrogen-rich salts based on 5-(5-Nitro-1H-1,2,4-triazol-3-yl)-1H-tetrazole (H2NTT) has been presented. Structural characterization of these two salts was accomplished by utilizing NMR, MS, IR spectroscopy, and X-ray diffraction. The standard heats of formation were calculated, and the differential scanning calorimetry (DSC) and sensitivity test were carried out. Their detonation performances were estimated by EXPLO 5 program. These newly synthesized salts showed highly positive heat of formation and low sensitivity. It is noteworthy that the diaminoguanidine salt b exhibited good detonation performance superior to traditional explosive TNT (Trinitrotoluene), making it a prospective candidate for insensitive energetic material.
设计和合成不敏感的高能材料是一项必要而具有挑战性的工作。本文介绍了基于 5-(5-硝基-1H-1,2,4-三唑-3-基)-1H-四氮唑(H2NTT)的新型富氮盐的合成。利用核磁共振、质谱、红外光谱和 X 射线衍射对这两种盐进行了结构表征。计算了标准形成热,并进行了差示扫描量热法(DSC)和灵敏度测试。用 EXPLO 5 程序估算了它们的引爆性能。这些新合成的盐类显示出较高的正形成热和较低的灵敏度。值得注意的是,二氨基胍盐 b 表现出了优于传统炸药 TNT(三硝基甲苯)的良好起爆性能,因此有望成为不敏感的高能材料。
期刊介绍:
The Journal of Physical Organic Chemistry is the foremost international journal devoted to the relationship between molecular structure and chemical reactivity in organic systems. It publishes Research Articles, Reviews and Mini Reviews based on research striving to understand the principles governing chemical structures in relation to activity and transformation with physical and mathematical rigor, using results derived from experimental and computational methods. Physical Organic Chemistry is a central and fundamental field with multiple applications in fields such as molecular recognition, supramolecular chemistry, catalysis, photochemistry, biological and material sciences, nanotechnology and surface science.