The Study on Synthesis and Characterization of Insensitive Energetic Materials Based on 5-(5-Nitro-1H-1,2,4-Triazol-3-yl)-1H-Tetrazole

IF 1.9 4区 化学 Q2 CHEMISTRY, ORGANIC Journal of Physical Organic Chemistry Pub Date : 2024-10-15 DOI:10.1002/poc.4667
Chenchen Lin, Pingping Yi, Xiaoyi Yi, Tingwei Wang, Jianguo Zhang, Piao He
{"title":"The Study on Synthesis and Characterization of Insensitive Energetic Materials Based on 5-(5-Nitro-1H-1,2,4-Triazol-3-yl)-1H-Tetrazole","authors":"Chenchen Lin,&nbsp;Pingping Yi,&nbsp;Xiaoyi Yi,&nbsp;Tingwei Wang,&nbsp;Jianguo Zhang,&nbsp;Piao He","doi":"10.1002/poc.4667","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The design and synthesis of insensitive energetic materials are a necessary and challenging work. The synthesis of novel nitrogen-rich salts based on 5-(5-Nitro-1H-1,2,4-triazol-3-yl)-1H-tetrazole (H<sub>2</sub>NTT) has been presented. Structural characterization of these two salts was accomplished by utilizing NMR, MS, IR spectroscopy, and X-ray diffraction. The standard heats of formation were calculated, and the differential scanning calorimetry (DSC) and sensitivity test were carried out. Their detonation performances were estimated by EXPLO 5 program. These newly synthesized salts showed highly positive heat of formation and low sensitivity. It is noteworthy that the diaminoguanidine salt <b>b</b> exhibited good detonation performance superior to traditional explosive TNT (Trinitrotoluene), making it a prospective candidate for insensitive energetic material.</p>\n </div>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"38 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/poc.4667","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

The design and synthesis of insensitive energetic materials are a necessary and challenging work. The synthesis of novel nitrogen-rich salts based on 5-(5-Nitro-1H-1,2,4-triazol-3-yl)-1H-tetrazole (H2NTT) has been presented. Structural characterization of these two salts was accomplished by utilizing NMR, MS, IR spectroscopy, and X-ray diffraction. The standard heats of formation were calculated, and the differential scanning calorimetry (DSC) and sensitivity test were carried out. Their detonation performances were estimated by EXPLO 5 program. These newly synthesized salts showed highly positive heat of formation and low sensitivity. It is noteworthy that the diaminoguanidine salt b exhibited good detonation performance superior to traditional explosive TNT (Trinitrotoluene), making it a prospective candidate for insensitive energetic material.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计和合成不敏感的高能材料是一项必要而具有挑战性的工作。本文介绍了基于 5-(5-硝基-1H-1,2,4-三唑-3-基)-1H-四氮唑(H2NTT)的新型富氮盐的合成。利用核磁共振、质谱、红外光谱和 X 射线衍射对这两种盐进行了结构表征。计算了标准形成热,并进行了差示扫描量热法(DSC)和灵敏度测试。用 EXPLO 5 程序估算了它们的引爆性能。这些新合成的盐类显示出较高的正形成热和较低的灵敏度。值得注意的是,二氨基胍盐 b 表现出了优于传统炸药 TNT(三硝基甲苯)的良好起爆性能,因此有望成为不敏感的高能材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.60
自引率
11.10%
发文量
161
审稿时长
2.3 months
期刊介绍: The Journal of Physical Organic Chemistry is the foremost international journal devoted to the relationship between molecular structure and chemical reactivity in organic systems. It publishes Research Articles, Reviews and Mini Reviews based on research striving to understand the principles governing chemical structures in relation to activity and transformation with physical and mathematical rigor, using results derived from experimental and computational methods. Physical Organic Chemistry is a central and fundamental field with multiple applications in fields such as molecular recognition, supramolecular chemistry, catalysis, photochemistry, biological and material sciences, nanotechnology and surface science.
期刊最新文献
Issue Information Counter-Anion-Dependent Optical Properties of Cationic N22-Methylated Chlorophyll-a Derivatives Issue Information Cover Image Kinetic and Mechanistic Investigation of L-Phenylalanine Oxidation by Alkaline Cu(III) Periodate in CPC Micellar Medium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1