Ferroelectric Nanomaterials for Energy Harvesting and Self-Powered Sensing Applications

Xiang Yu, Yun Ji, Kewei Zhang, Xinyi Shen, Shijian Zhang, Mofei Xu, Xiaoyun Le
{"title":"Ferroelectric Nanomaterials for Energy Harvesting and Self-Powered Sensing Applications","authors":"Xiang Yu,&nbsp;Yun Ji,&nbsp;Kewei Zhang,&nbsp;Xinyi Shen,&nbsp;Shijian Zhang,&nbsp;Mofei Xu,&nbsp;Xiaoyun Le","doi":"10.1002/adsr.202400049","DOIUrl":null,"url":null,"abstract":"<p>The rapid development of the Internet of Things has introduced new challenges for miniaturized, highly integrated energy harvesters and sensors, promoting the exploration of various novel nanomaterials. Ferroelectric nanomaterials, characterized by large remanent polarization, exceptional dielectric properties, outstanding chemical stability, and diverse electricity generation capabilities, are emerging as promising candidates in a variety of fields. Possessing various mechanisms for electricity generation, including piezoelectric, pyroelectric, photovoltaic, and triboelectric effects, ferroelectric nanomaterials demonstrate their capability for harvesting and sensing multiple energies simultaneously, including light, thermal, and mechanical energies. This capability contributes to the miniaturization and high integration of electronic devices. This article reviews recent achievements in ferroelectric nanomaterials and their applications in energy harvesting and self-powered sensing. Different categories of ferroelectric nanomaterials, their ferroelectric properties, and fabrication methods are introduced. The working mechanisms and performance of ferroelectric energy harvesters and self-powered sensors are described. Additionally, future prospects are discussed.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400049","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsr.202400049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid development of the Internet of Things has introduced new challenges for miniaturized, highly integrated energy harvesters and sensors, promoting the exploration of various novel nanomaterials. Ferroelectric nanomaterials, characterized by large remanent polarization, exceptional dielectric properties, outstanding chemical stability, and diverse electricity generation capabilities, are emerging as promising candidates in a variety of fields. Possessing various mechanisms for electricity generation, including piezoelectric, pyroelectric, photovoltaic, and triboelectric effects, ferroelectric nanomaterials demonstrate their capability for harvesting and sensing multiple energies simultaneously, including light, thermal, and mechanical energies. This capability contributes to the miniaturization and high integration of electronic devices. This article reviews recent achievements in ferroelectric nanomaterials and their applications in energy harvesting and self-powered sensing. Different categories of ferroelectric nanomaterials, their ferroelectric properties, and fabrication methods are introduced. The working mechanisms and performance of ferroelectric energy harvesters and self-powered sensors are described. Additionally, future prospects are discussed.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于能量收集和自供电传感应用的铁电纳米材料
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-Powered, Soft and Breathable Human–Machine Interface Based on Piezoelectric Sensors (Adv. Sensor Res. 12/2024) Masthead (Adv. Sensor Res. 12/2024) Nanoflowers Templated CuO/Cu Hybrid Metasurface for Sensitive THz-TDS Detection of Acetylcholine (Adv. Sensor Res. 12/2024) Transforming Renal Diagnosis: Graphene-Enhanced Lab-On-a-Chip for Multiplexed Kidney Biomarker Detection in Capillary Blood (Adv. Sensor Res. 11/2024) Masthead (Adv. Sensor Res. 11/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1