Anaerobic Naphthalene Biotransformation Coupled to Sulfate Reduction

IF 1.5 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Clean-soil Air Water Pub Date : 2024-11-21 DOI:10.1002/clen.202400049
Aparna Yadu, Biju Prava Sahariah, Jayapal Anandkumar
{"title":"Anaerobic Naphthalene Biotransformation Coupled to Sulfate Reduction","authors":"Aparna Yadu,&nbsp;Biju Prava Sahariah,&nbsp;Jayapal Anandkumar","doi":"10.1002/clen.202400049","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Polycyclic aromatic hydrocarbons (PAHs) are a diverse group of hazardous and toxic pollutants widely distributed in the environment. The anaerobic degradation is a promising technique for the removal of recalcitrant aromatic hydrocarbons from waste stream. In this study, anaerobic degradation of naphthalene (NAP) was investigated by using cow dung-enriched mixed microbial consortia with varying NAP and sulfate concentrations. The maximum removal of NAP (99.8%) and sulfate (68%) was achieved while varying the sulfate concentration from 50 to 500 mg/L in 500 mg/L NAP influent concentration. 41.9 mg/L of sulfate was generated during this study. Similarly, when NAP concentration was varied from 100 to 1000 mg/L, 84% of chemical oxygen demand (COD), 74% of sulfate, and 92% of NAP were observed at constant sulfate concentration of 250 mg/L. This result reveals that sulfate concentration had no significant effect on NAP degradation. NAP mineralization was evidenced by the formation of sulfide and production of metabolites with decreasing NAP concentration. Gas chromatography–mass spectrometry (GC–MS) confirmed the formation of metabolites like naphthol and 1,2-dihydroxynaphthalene due to monooxygenation at C-1 as part of the metabolic pathway. The rate of NAP, COD, and sulfate removal followed the first-order kinetics with high regression coefficients while varying the influent NAP concentrations.</p>\n </div>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 12","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clean-soil Air Water","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/clen.202400049","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are a diverse group of hazardous and toxic pollutants widely distributed in the environment. The anaerobic degradation is a promising technique for the removal of recalcitrant aromatic hydrocarbons from waste stream. In this study, anaerobic degradation of naphthalene (NAP) was investigated by using cow dung-enriched mixed microbial consortia with varying NAP and sulfate concentrations. The maximum removal of NAP (99.8%) and sulfate (68%) was achieved while varying the sulfate concentration from 50 to 500 mg/L in 500 mg/L NAP influent concentration. 41.9 mg/L of sulfate was generated during this study. Similarly, when NAP concentration was varied from 100 to 1000 mg/L, 84% of chemical oxygen demand (COD), 74% of sulfate, and 92% of NAP were observed at constant sulfate concentration of 250 mg/L. This result reveals that sulfate concentration had no significant effect on NAP degradation. NAP mineralization was evidenced by the formation of sulfide and production of metabolites with decreasing NAP concentration. Gas chromatography–mass spectrometry (GC–MS) confirmed the formation of metabolites like naphthol and 1,2-dihydroxynaphthalene due to monooxygenation at C-1 as part of the metabolic pathway. The rate of NAP, COD, and sulfate removal followed the first-order kinetics with high regression coefficients while varying the influent NAP concentrations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Clean-soil Air Water
Clean-soil Air Water 环境科学-海洋与淡水生物学
CiteScore
2.80
自引率
5.90%
发文量
88
审稿时长
3.6 months
期刊介绍: CLEAN covers all aspects of Sustainability and Environmental Safety. The journal focuses on organ/human--environment interactions giving interdisciplinary insights on a broad range of topics including air pollution, waste management, the water cycle, and environmental conservation. With a 2019 Journal Impact Factor of 1.603 (Journal Citation Reports (Clarivate Analytics, 2020), the journal publishes an attractive mixture of peer-reviewed scientific reviews, research papers, and short communications. Papers dealing with environmental sustainability issues from such fields as agriculture, biological sciences, energy, food sciences, geography, geology, meteorology, nutrition, soil and water sciences, etc., are welcome.
期刊最新文献
Issue Information: Clean Soil Air Water. 12/2024 Holistic Management of Wastewater Pollution Through Biological Treatment: A Sustainable Future Anaerobic Naphthalene Biotransformation Coupled to Sulfate Reduction Commercial Blue Textile Dye Decolorization Using Aspergillus oryzae RH1 Isolated From Fermented Miso Issue Information: Clean Soil Air Water. 11/2024
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1