Wave Action Conservation, Eliassen-Palm Flux and Nonacceleration Conditions Within Atmospheres of Variable Composition

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Geophysical Research: Atmospheres Pub Date : 2024-12-20 DOI:10.1029/2024JD040917
Stephen D. Eckermann
{"title":"Wave Action Conservation, Eliassen-Palm Flux and Nonacceleration Conditions Within Atmospheres of Variable Composition","authors":"Stephen D. Eckermann","doi":"10.1029/2024JD040917","DOIUrl":null,"url":null,"abstract":"<p>The foundational conservation equations of Eliassen and Palm (EP) and Bretherton and Garrett (BG) governing the pseudomomentum and action of waves in geophysical fluids are shown to be approximations that do not hold generally within atmospheres of varying mass composition, such as the Earth's thermosphere and other planetary atmospheres. Standard BG/EP conservation equations assume a fixed connection between mean-state entropy and pressure that breaks down when composition varies. New entropy-corrected (EC) forms of these equations are derived that conserve total energy and momentum in atmospheres where composition varies. Three separate and largely independent derivations are presented that all lead to the same EC forms of these equations and their associated diagnostics, such as nonacceleration conditions. Since EC forms present as corrective scaling factors to standard BG/EP equations, existing models and diagnostics are easily generalized. Representative thermospheric calculations reveal that the EC equations remove systematic energy and momentum biases of up to 40% that in turn lead steady conservative waves to grow more rapidly in amplitude with increasing altitude.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"129 24","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD040917","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The foundational conservation equations of Eliassen and Palm (EP) and Bretherton and Garrett (BG) governing the pseudomomentum and action of waves in geophysical fluids are shown to be approximations that do not hold generally within atmospheres of varying mass composition, such as the Earth's thermosphere and other planetary atmospheres. Standard BG/EP conservation equations assume a fixed connection between mean-state entropy and pressure that breaks down when composition varies. New entropy-corrected (EC) forms of these equations are derived that conserve total energy and momentum in atmospheres where composition varies. Three separate and largely independent derivations are presented that all lead to the same EC forms of these equations and their associated diagnostics, such as nonacceleration conditions. Since EC forms present as corrective scaling factors to standard BG/EP equations, existing models and diagnostics are easily generalized. Representative thermospheric calculations reveal that the EC equations remove systematic energy and momentum biases of up to 40% that in turn lead steady conservative waves to grow more rapidly in amplitude with increasing altitude.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
埃利亚森和帕尔姆(Eliassen and Palm,EP)以及布雷特顿和加勒特(Bretherton and Garrett,BG)提出的关于地球物理流体中的假动量和波的作用的基本守恒方程被证明是近似值,在不同质量成分的大气层(如地球热大气层和其他行星大气层)中一般不成立。标准的 BG/EP 守恒方程假定平均状态熵和压力之间存在固定的联系,而这种联系在成分发生变化时会被打破。我们推导出了这些方程的新熵校正(EC)形式,可以在成分变化的大气中保持总能量和总动量。本文介绍了三种不同的、基本独立的推导方法,它们都能得出这些方程的相同熵校正形式及其相关诊断方法,如非加速条件。由于 EC 形式是标准 BG/EP 方程的校正缩放因子,因此现有模型和诊断方法很容易推广。具有代表性的热大气层计算显示,EC 方程消除了高达 40% 的系统能量和动量偏差,这反过来又导致稳定保守波的振幅随着高度的增加而更快地增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
期刊最新文献
Aerosol Direct Radiative Effects From Extreme Fire Events in Australia, California and Siberia Occurring in 2019–2020 Impact of Assimilating WindBorne Observations Following Different Parts of a TPV on the Predictability of an Arctic Cyclone During THINICE Wave Action Conservation, Eliassen-Palm Flux and Nonacceleration Conditions Within Atmospheres of Variable Composition Modeling Study on the Impacts of Mineral Dust Photocatalytic Heterogeneous Chemistry on the Sulfur Removal Over East Asia A Vertically Resolved Canopy Improves Chemical Transport Model Predictions of Ozone Deposition to North Temperate Forests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1