Evaluation of Scuffing Load Capacity of Helical Gear Based on the Tribo-Dynamic Model

IF 1.8 4区 工程技术 Q3 ENGINEERING, CHEMICAL Lubrication Science Pub Date : 2024-09-23 DOI:10.1002/ls.1723
Mingyong Liu, Shuchang Chen, Jun Hu, Guogeng Zhang, Lin Zhu, Xue Xiang, Chunai Yan
{"title":"Evaluation of Scuffing Load Capacity of Helical Gear Based on the Tribo-Dynamic Model","authors":"Mingyong Liu,&nbsp;Shuchang Chen,&nbsp;Jun Hu,&nbsp;Guogeng Zhang,&nbsp;Lin Zhu,&nbsp;Xue Xiang,&nbsp;Chunai Yan","doi":"10.1002/ls.1723","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The scuffing load capacity of gear is closely related to the meshing temperature rise of tooth surface. The key to predict the temperature rise is to establish an accurate meshing temperature rise model. In the paper, a tribo-dynamic model of helical gear is established through coupling of tooth surface lubrication parameters, and the influence of temperature rise on ambient temperature during meshing process is considered. Then, the effects of oil supply temperature, input speed and torque on tooth surface temperature rise, film thickness, friction excitation and gear dynamic characteristics are discussed. The results show that the temperature rise of the gear is higher during the engaging-in and engaging-out regions. Meanwhile, there is local high temperature at the end of the contact line due to the end effect. The vibration of gear along the off-line-of-action direction is mainly determined by friction excitation. With the increase of oil supply temperature, input speed and torque, the risk of scuffing failure increases and the influence of oil supply temperature and input load is more significant. The conclusions of this paper may provide some valuable suggestions for the anti-gluing failure design of gear in engineering.</p>\n </div>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":"37 1","pages":"78-92"},"PeriodicalIF":1.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubrication Science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ls.1723","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The scuffing load capacity of gear is closely related to the meshing temperature rise of tooth surface. The key to predict the temperature rise is to establish an accurate meshing temperature rise model. In the paper, a tribo-dynamic model of helical gear is established through coupling of tooth surface lubrication parameters, and the influence of temperature rise on ambient temperature during meshing process is considered. Then, the effects of oil supply temperature, input speed and torque on tooth surface temperature rise, film thickness, friction excitation and gear dynamic characteristics are discussed. The results show that the temperature rise of the gear is higher during the engaging-in and engaging-out regions. Meanwhile, there is local high temperature at the end of the contact line due to the end effect. The vibration of gear along the off-line-of-action direction is mainly determined by friction excitation. With the increase of oil supply temperature, input speed and torque, the risk of scuffing failure increases and the influence of oil supply temperature and input load is more significant. The conclusions of this paper may provide some valuable suggestions for the anti-gluing failure design of gear in engineering.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Lubrication Science
Lubrication Science ENGINEERING, CHEMICAL-ENGINEERING, MECHANICAL
CiteScore
3.60
自引率
10.50%
发文量
61
审稿时长
6.8 months
期刊介绍: Lubrication Science is devoted to high-quality research which notably advances fundamental and applied aspects of the science and technology related to lubrication. It publishes research articles, short communications and reviews which demonstrate novelty and cutting edge science in the field, aiming to become a key specialised venue for communicating advances in lubrication research and development. Lubrication is a diverse discipline ranging from lubrication concepts in industrial and automotive engineering, solid-state and gas lubrication, micro & nanolubrication phenomena, to lubrication in biological systems. To investigate these areas the scope of the journal encourages fundamental and application-based studies on: Synthesis, chemistry and the broader development of high-performing and environmentally adapted lubricants and additives. State of the art analytical tools and characterisation of lubricants, lubricated surfaces and interfaces. Solid lubricants, self-lubricating coatings and composites, lubricating nanoparticles. Gas lubrication. Extreme-conditions lubrication. Green-lubrication technology and lubricants. Tribochemistry and tribocorrosion of environment- and lubricant-interface interactions. Modelling of lubrication mechanisms and interface phenomena on different scales: from atomic and molecular to mezzo and structural. Modelling hydrodynamic and thin film lubrication. All lubrication related aspects of nanotribology. Surface-lubricant interface interactions and phenomena: wetting, adhesion and adsorption. Bio-lubrication, bio-lubricants and lubricated biological systems. Other novel and cutting-edge aspects of lubrication in all lubrication regimes.
期刊最新文献
Issue Information Issue Information A Simplified Non-Hertzian Wheel-Rail Adhesion Model Under Interfacial Contaminations Considering Surface Roughness Enhancing Lubrication Performance of Ga–In–Sn Liquid Metal via Electrochemical Boronising Treatment Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1