Metal–Organic Frameworks and Derivative Materials in Perovskite Solar Cells: Recent Advances, Emerging Trends, and Perspectives

IF 6 3区 工程技术 Q2 ENERGY & FUELS Solar RRL Pub Date : 2024-10-30 DOI:10.1002/solr.202400607
Syed Afaq Ali Shah, Muhammad Hassan Sayyad, Zhongyi Guo
{"title":"Metal–Organic Frameworks and Derivative Materials in Perovskite Solar Cells: Recent Advances, Emerging Trends, and Perspectives","authors":"Syed Afaq Ali Shah,&nbsp;Muhammad Hassan Sayyad,&nbsp;Zhongyi Guo","doi":"10.1002/solr.202400607","DOIUrl":null,"url":null,"abstract":"<p>The power conversion efficiency (PCE) of perovskite solar cells (PSCs) has reached an impressive value of 26.1%. While several initiatives such as structural modification and fabrication techniques helped steadily increase the PCE and stability of PSCs in recent years, the incorporation of metal–organic frameworks (MOFs) in PSCs stands out among other innovations and has emerged as a promising path forward to make this technology the front-runner for realizing next-generation low-cost photovoltaic technologies. Owing to their unique physiochemical properties and extraordinary advantages such as large specific surface area and tunable pore structures, incorporating them as/in different functional layers of PSCs endows the devices with extraordinary optoelectronic properties. This article reviews the latest research practices adapted in integrating MOFs and derivative materials into the constituent blocks of PSCs such as photoactive perovskite absorber, electron-transport layer, hole-transport layer, and interfacial layer. Notably, a special emphasis is placed on the aspect of stability improvement in PSCs by incorporating MOFs and derivative materials. Also, the potential of MOFs as lead absorbents in PSCs is highlighted. Finally, an outlook on the critical challenges faced and future perspectives for employing MOFs in PSCs in light of the commercialization of PSCs is provided.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"8 23","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400607","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The power conversion efficiency (PCE) of perovskite solar cells (PSCs) has reached an impressive value of 26.1%. While several initiatives such as structural modification and fabrication techniques helped steadily increase the PCE and stability of PSCs in recent years, the incorporation of metal–organic frameworks (MOFs) in PSCs stands out among other innovations and has emerged as a promising path forward to make this technology the front-runner for realizing next-generation low-cost photovoltaic technologies. Owing to their unique physiochemical properties and extraordinary advantages such as large specific surface area and tunable pore structures, incorporating them as/in different functional layers of PSCs endows the devices with extraordinary optoelectronic properties. This article reviews the latest research practices adapted in integrating MOFs and derivative materials into the constituent blocks of PSCs such as photoactive perovskite absorber, electron-transport layer, hole-transport layer, and interfacial layer. Notably, a special emphasis is placed on the aspect of stability improvement in PSCs by incorporating MOFs and derivative materials. Also, the potential of MOFs as lead absorbents in PSCs is highlighted. Finally, an outlook on the critical challenges faced and future perspectives for employing MOFs in PSCs in light of the commercialization of PSCs is provided.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钙钛矿太阳能电池中的金属-有机框架和衍生材料:最新进展、新趋势和前景
钙钛矿太阳能电池(PSCs)的功率转换效率(PCE)达到了令人印象深刻的26.1%。近年来,结构修改和制造技术等举措有助于稳定提高PCE和PSCs的稳定性,而金属有机框架(mof)在PSCs中的应用在其他创新中脱颖而出,并已成为实现下一代低成本光伏技术的领跑者。由于其独特的物理化学性质和非凡的优势,如大的比表面积和可调的孔结构,将它们作为PSCs的不同功能层,赋予了器件非凡的光电性能。本文综述了将mof及其衍生材料集成到psc组成块中的最新研究实践,如光活性钙钛矿吸收剂、电子传输层、空穴传输层和界面层。值得注意的是,特别强调了通过加入mof和衍生材料来改善psc稳定性的方面。此外,mof在psc中作为铅吸收剂的潜力也得到了强调。最后,展望了在psc商业化的背景下,mof在psc中应用所面临的关键挑战和未来的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar RRL
Solar RRL Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍: Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.
期刊最新文献
Cover Picture Issue Information Cover Picture Issue Information Minimizing Open-Circuit Voltage Losses in Perovskite/Perovskite/Silicon Triple-Junction Solar Cell with Optimized Top Cell
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1