Posaconazole loaded Lipid Polymer Hybrid Nanoparticles: Design and Development for Vaginal Drug Delivery

IF 2.7 4区 医学 Q2 PHARMACOLOGY & PHARMACY Journal of Pharmaceutical Innovation Pub Date : 2024-12-22 DOI:10.1007/s12247-024-09898-8
Sanjeevani Deshkar, Shubhangi Madankar, Ankita Shinde, Manisha Junnarkar, Avinash Kharat, Roshani Pagar, Ravindra Wavhale, Neelu Nawani
{"title":"Posaconazole loaded Lipid Polymer Hybrid Nanoparticles: Design and Development for Vaginal Drug Delivery","authors":"Sanjeevani Deshkar,&nbsp;Shubhangi Madankar,&nbsp;Ankita Shinde,&nbsp;Manisha Junnarkar,&nbsp;Avinash Kharat,&nbsp;Roshani Pagar,&nbsp;Ravindra Wavhale,&nbsp;Neelu Nawani","doi":"10.1007/s12247-024-09898-8","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The treatment of recurrent vaginal fungal infections by topical application of antifungal agent is limited mainly due to poor solubility and low levels of the drug available at the site of action in the affected tissues. For this reason, research is being done on novel drug-delivery technologies and new therapeutic compounds. Posaconazole (POS) is a broad-spectrum antifungal reported to be effective in managing serious infections and drug-resistant fungal strains.</p><h3>Purpose</h3><p>In the present study, lipid polymer hybrid nanoparticles (LPHNP) were prepared to achieve site-specific targeting and improve tissue uptake of POS. A sustained release profile and higher drug encapsulation are both rendered possible by the structural benefits of polymers and the biomimetic characteristics of lipids.</p><h3>Material and Methods</h3><p>In the present study, LPHNP were prepared using POS, polycaprolactone (PCL), soya lecithin, and polyvinyl alcohol (PVA) as structural constituents by emulsification followed by solvent evaporation. The formulation batches were subsequently optimized using a 3-factor 3-level Box Behnken statistical design. Particle size, zeta potential, surface morphology by transmission electron microscopy (TEM), drug entrapment efficiency, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), X-ray diffraction studies (XRD), and in vitro drug release were all employed to characterize the formulations. A cell viability assay was used to conduct cytotoxicity studies of the LPHNP on the SiHa cell line. The cellular uptake was assessed using a confocal laser scanning microscope and flow cytometry.</p><h3>Results</h3><p>The particle size, polydispersity index (PDI), and zeta potential of the optimized LPHNP batch were found to be 465 ± 58.13 nm, 0.17 ± 0.07, and -12 mV respectively. The entrapment efficiency was found to be 90.92 ± 0.22%. The antifungal activity of POS-loaded LPHNP was significantly higher than the pure drug. The release of drug from the LPHNP system was observed to be sustained for up to 24 h. The in vitro cell cytotoxicity (MTT assay) and cellular uptake were evaluated using SiHa cell lines. The MTT assay of the developed LPHNP formulation demonstrated negligible cytotoxicity as compared to that of pure POS. The cell uptake studies by flow cytometry showed greater cell internalization of the formulation (58.4% after 4 h incubation) owing to the smaller particle size of the nanoparticles. Similar results (78% after 4 h incubation) were observed in confocal microscopy indicating probable higher therapeutic efficacy for deep-seated fungal infections.</p><h3>Conclusion</h3><p>Conclusively, LPHNP is a promising drug delivery system for vaginal targeting of therapeutic moieties.</p></div>","PeriodicalId":656,"journal":{"name":"Journal of Pharmaceutical Innovation","volume":"20 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmaceutical Innovation","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12247-024-09898-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

The treatment of recurrent vaginal fungal infections by topical application of antifungal agent is limited mainly due to poor solubility and low levels of the drug available at the site of action in the affected tissues. For this reason, research is being done on novel drug-delivery technologies and new therapeutic compounds. Posaconazole (POS) is a broad-spectrum antifungal reported to be effective in managing serious infections and drug-resistant fungal strains.

Purpose

In the present study, lipid polymer hybrid nanoparticles (LPHNP) were prepared to achieve site-specific targeting and improve tissue uptake of POS. A sustained release profile and higher drug encapsulation are both rendered possible by the structural benefits of polymers and the biomimetic characteristics of lipids.

Material and Methods

In the present study, LPHNP were prepared using POS, polycaprolactone (PCL), soya lecithin, and polyvinyl alcohol (PVA) as structural constituents by emulsification followed by solvent evaporation. The formulation batches were subsequently optimized using a 3-factor 3-level Box Behnken statistical design. Particle size, zeta potential, surface morphology by transmission electron microscopy (TEM), drug entrapment efficiency, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), X-ray diffraction studies (XRD), and in vitro drug release were all employed to characterize the formulations. A cell viability assay was used to conduct cytotoxicity studies of the LPHNP on the SiHa cell line. The cellular uptake was assessed using a confocal laser scanning microscope and flow cytometry.

Results

The particle size, polydispersity index (PDI), and zeta potential of the optimized LPHNP batch were found to be 465 ± 58.13 nm, 0.17 ± 0.07, and -12 mV respectively. The entrapment efficiency was found to be 90.92 ± 0.22%. The antifungal activity of POS-loaded LPHNP was significantly higher than the pure drug. The release of drug from the LPHNP system was observed to be sustained for up to 24 h. The in vitro cell cytotoxicity (MTT assay) and cellular uptake were evaluated using SiHa cell lines. The MTT assay of the developed LPHNP formulation demonstrated negligible cytotoxicity as compared to that of pure POS. The cell uptake studies by flow cytometry showed greater cell internalization of the formulation (58.4% after 4 h incubation) owing to the smaller particle size of the nanoparticles. Similar results (78% after 4 h incubation) were observed in confocal microscopy indicating probable higher therapeutic efficacy for deep-seated fungal infections.

Conclusion

Conclusively, LPHNP is a promising drug delivery system for vaginal targeting of therapeutic moieties.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Pharmaceutical Innovation
Journal of Pharmaceutical Innovation PHARMACOLOGY & PHARMACY-
CiteScore
3.70
自引率
3.80%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Journal of Pharmaceutical Innovation (JPI), is an international, multidisciplinary peer-reviewed scientific journal dedicated to publishing high quality papers emphasizing innovative research and applied technologies within the pharmaceutical and biotechnology industries. JPI''s goal is to be the premier communication vehicle for the critical body of knowledge that is needed for scientific evolution and technical innovation, from R&D to market. Topics will fall under the following categories: Materials science, Product design, Process design, optimization, automation and control, Facilities; Information management, Regulatory policy and strategy, Supply chain developments , Education and professional development, Journal of Pharmaceutical Innovation publishes four issues a year.
期刊最新文献
The Assessment of Vaginal permeability – in silico Approach Coconut Oil and Shea Butter as Lipids for the Formulation of Ciprofloxacin-Loaded Nanoparticles Ezetimibe Loaded Nanostructured Lipid Carriers Tablets: Response Surface Methodology, In-vitro Characterization, and Pharmacokinetics Study in Rats Advanced Normal-Phase HPTLC Profiling of Eltrombopag Olamine with Automated Development and Box-Behnken Optimizations Characterization of Thermoresponsive Poly(N-vinylcaprolactam) Polymer Containing Doxorubicin-Loaded Niosomes: Synthesis, Structural Properties, and Anticancer Efficacy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1