{"title":"Thin Layer Quantization Method for a Spin Particle on a Curved Surface","authors":"S. Kimouche, N. Ferkous","doi":"10.1007/s10773-024-05856-9","DOIUrl":null,"url":null,"abstract":"<div><p>Using the fundamental framework of the thin-layer quantization method, we discuss the non-relativistic limit of the Schrödinger-Dirac equation for a particle constrained to move on a curved surface. We show that the inclusion of spin connections in the formalism give rise to scalar terms which provide a new scalar geometric potential. The coupling between the spin connections determined by the geometry of the curved surface and the spin of the particle can generate bound states even for the repulsive case of this obtained geometric potential. The developed procedure is applied to a surface of axial symmetry. We give three interesting examples of surface confinement, namely cylindrical, spherical and conical, and we explicitly deduce the energy levels for each case.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"63 12","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-024-05856-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Using the fundamental framework of the thin-layer quantization method, we discuss the non-relativistic limit of the Schrödinger-Dirac equation for a particle constrained to move on a curved surface. We show that the inclusion of spin connections in the formalism give rise to scalar terms which provide a new scalar geometric potential. The coupling between the spin connections determined by the geometry of the curved surface and the spin of the particle can generate bound states even for the repulsive case of this obtained geometric potential. The developed procedure is applied to a surface of axial symmetry. We give three interesting examples of surface confinement, namely cylindrical, spherical and conical, and we explicitly deduce the energy levels for each case.
期刊介绍:
International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.