{"title":"Synthesis of nano CuS and its effects on the light transmittance, thermal insulation, and mechanical properties of CuS/PVB composite film","authors":"Mingzhi Liang, Hua Luo, Xuanlun Wang, Duo Pan","doi":"10.1007/s42114-024-01147-3","DOIUrl":null,"url":null,"abstract":"<div><p>Nano copper sulfide (CuS) is a kind of good thermal insulation nanomaterial with low visible light absorption and high infrared light blocking rate. In this study, sodium sulfide (NaS), thiourea, copper chloride dihydrate (CuCl<sub>2</sub>·2H<sub>2</sub>O), and copper nitrate trihydrate (Cu(NO<sub>3</sub>)<sub>2</sub>·3H<sub>2</sub>O) were used as sulfur source and copper source to prepare two kinds of nano CuS by hydrothermal method, and the surface of the nano CuS was treated with alkoxysilane (KH570). And then, with polyvinyl butyral (PVB) melt blending extrusion pelleting, PVB composite film was prepared, and the light transmittance, heat insulation performance, and mechanical properties were studied. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to characterize the nano CuS, and the results showed that the nano CuS exhibited two morphologies, flake and hollow, respectively. The PVB composite film doped with hollow CuS has higher visible light transmittance and lower thermal conductivity, which are 82.7% and 0.191 W/(m·K), respectively. Meanwhile, the mechanical properties of the film are significantly improved with the rate 0.3/100 for hollow CuS/PVB.</p><h3>Graphical abstract</h3><p>In this study, two forms of nano CuS were used as fillers and fused with PVB to form glass intermediate films, and the light transmittance, thermal insulation, and mechanical properties of the glass intermediate film were studied.</p>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 1","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-01147-3","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Nano copper sulfide (CuS) is a kind of good thermal insulation nanomaterial with low visible light absorption and high infrared light blocking rate. In this study, sodium sulfide (NaS), thiourea, copper chloride dihydrate (CuCl2·2H2O), and copper nitrate trihydrate (Cu(NO3)2·3H2O) were used as sulfur source and copper source to prepare two kinds of nano CuS by hydrothermal method, and the surface of the nano CuS was treated with alkoxysilane (KH570). And then, with polyvinyl butyral (PVB) melt blending extrusion pelleting, PVB composite film was prepared, and the light transmittance, heat insulation performance, and mechanical properties were studied. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to characterize the nano CuS, and the results showed that the nano CuS exhibited two morphologies, flake and hollow, respectively. The PVB composite film doped with hollow CuS has higher visible light transmittance and lower thermal conductivity, which are 82.7% and 0.191 W/(m·K), respectively. Meanwhile, the mechanical properties of the film are significantly improved with the rate 0.3/100 for hollow CuS/PVB.
Graphical abstract
In this study, two forms of nano CuS were used as fillers and fused with PVB to form glass intermediate films, and the light transmittance, thermal insulation, and mechanical properties of the glass intermediate film were studied.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.