Junsheng Hou, Dongyu Li, Lei Huang, Li Ma, Xiong Zhao, Jinjia Wei, Nanjing Hao
{"title":"Electronic cooling via acoustic-enabled low-power compact heat exchanger","authors":"Junsheng Hou, Dongyu Li, Lei Huang, Li Ma, Xiong Zhao, Jinjia Wei, Nanjing Hao","doi":"10.1038/s42005-024-01915-z","DOIUrl":null,"url":null,"abstract":"Contactless acoustics provide a unique, flexible active means for phase-change heat transfer enhancement. However, the ultrasonic transducers used for conventional acoustic enhancement are bulky and unfavorable for integration, and the heat accumulation under high power is not conducive to long-term operation, with limited enhancement in the critical heat flux (CHF). Herein, an acoustic-enabled low-power compact heat exchanger (ALCHE) is proposed with low energy consumption and long operation duration. Based on image processing and bubble tracking algorithm, it is found that the acoustic field accelerates bubble detachment and migration for achieving superior heat flux and larger heat transfer coefficient (HTC). 1.5 kHz acoustic field performs better heat transfer performance due to its strong acoustic radiation force magnitude and excellent acoustic pressure field direction. The stronger acoustic radiation force from higher acoustic power promotes the heat transfer performance among different acoustic powers. Long-time stable operation of acoustic field enhanced heat transfer under high heat flux is achieved with low acoustic power. Our designed heat exchanger not only overcomes the limitation of traditional bulky transducers, but also provides insights into the acoustic-enabled flow boiling heat transfer process. Improving the cooling performance of high-power electronics in confined spaces remains a challenge. Herein, the authors propose an acoustic-enabled low-power compact heat exchanger that utilizes contactless acoustics as a flexible active means for enhancing phase change cooling.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-9"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01915-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01915-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Contactless acoustics provide a unique, flexible active means for phase-change heat transfer enhancement. However, the ultrasonic transducers used for conventional acoustic enhancement are bulky and unfavorable for integration, and the heat accumulation under high power is not conducive to long-term operation, with limited enhancement in the critical heat flux (CHF). Herein, an acoustic-enabled low-power compact heat exchanger (ALCHE) is proposed with low energy consumption and long operation duration. Based on image processing and bubble tracking algorithm, it is found that the acoustic field accelerates bubble detachment and migration for achieving superior heat flux and larger heat transfer coefficient (HTC). 1.5 kHz acoustic field performs better heat transfer performance due to its strong acoustic radiation force magnitude and excellent acoustic pressure field direction. The stronger acoustic radiation force from higher acoustic power promotes the heat transfer performance among different acoustic powers. Long-time stable operation of acoustic field enhanced heat transfer under high heat flux is achieved with low acoustic power. Our designed heat exchanger not only overcomes the limitation of traditional bulky transducers, but also provides insights into the acoustic-enabled flow boiling heat transfer process. Improving the cooling performance of high-power electronics in confined spaces remains a challenge. Herein, the authors propose an acoustic-enabled low-power compact heat exchanger that utilizes contactless acoustics as a flexible active means for enhancing phase change cooling.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.