Electronic cooling via acoustic-enabled low-power compact heat exchanger

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Communications Physics Pub Date : 2024-12-23 DOI:10.1038/s42005-024-01915-z
Junsheng Hou, Dongyu Li, Lei Huang, Li Ma, Xiong Zhao, Jinjia Wei, Nanjing Hao
{"title":"Electronic cooling via acoustic-enabled low-power compact heat exchanger","authors":"Junsheng Hou, Dongyu Li, Lei Huang, Li Ma, Xiong Zhao, Jinjia Wei, Nanjing Hao","doi":"10.1038/s42005-024-01915-z","DOIUrl":null,"url":null,"abstract":"Contactless acoustics provide a unique, flexible active means for phase-change heat transfer enhancement. However, the ultrasonic transducers used for conventional acoustic enhancement are bulky and unfavorable for integration, and the heat accumulation under high power is not conducive to long-term operation, with limited enhancement in the critical heat flux (CHF). Herein, an acoustic-enabled low-power compact heat exchanger (ALCHE) is proposed with low energy consumption and long operation duration. Based on image processing and bubble tracking algorithm, it is found that the acoustic field accelerates bubble detachment and migration for achieving superior heat flux and larger heat transfer coefficient (HTC). 1.5 kHz acoustic field performs better heat transfer performance due to its strong acoustic radiation force magnitude and excellent acoustic pressure field direction. The stronger acoustic radiation force from higher acoustic power promotes the heat transfer performance among different acoustic powers. Long-time stable operation of acoustic field enhanced heat transfer under high heat flux is achieved with low acoustic power. Our designed heat exchanger not only overcomes the limitation of traditional bulky transducers, but also provides insights into the acoustic-enabled flow boiling heat transfer process. Improving the cooling performance of high-power electronics in confined spaces remains a challenge. Herein, the authors propose an acoustic-enabled low-power compact heat exchanger that utilizes contactless acoustics as a flexible active means for enhancing phase change cooling.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-9"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01915-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01915-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Contactless acoustics provide a unique, flexible active means for phase-change heat transfer enhancement. However, the ultrasonic transducers used for conventional acoustic enhancement are bulky and unfavorable for integration, and the heat accumulation under high power is not conducive to long-term operation, with limited enhancement in the critical heat flux (CHF). Herein, an acoustic-enabled low-power compact heat exchanger (ALCHE) is proposed with low energy consumption and long operation duration. Based on image processing and bubble tracking algorithm, it is found that the acoustic field accelerates bubble detachment and migration for achieving superior heat flux and larger heat transfer coefficient (HTC). 1.5 kHz acoustic field performs better heat transfer performance due to its strong acoustic radiation force magnitude and excellent acoustic pressure field direction. The stronger acoustic radiation force from higher acoustic power promotes the heat transfer performance among different acoustic powers. Long-time stable operation of acoustic field enhanced heat transfer under high heat flux is achieved with low acoustic power. Our designed heat exchanger not only overcomes the limitation of traditional bulky transducers, but also provides insights into the acoustic-enabled flow boiling heat transfer process. Improving the cooling performance of high-power electronics in confined spaces remains a challenge. Herein, the authors propose an acoustic-enabled low-power compact heat exchanger that utilizes contactless acoustics as a flexible active means for enhancing phase change cooling.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
期刊最新文献
Direct measurement of three different deformations near the ground state in an atomic nucleus. Unraveling the role of gravity in shaping intruder dynamics within vibrated granular media One-third magnetization plateau in Quantum Kagome antiferromagnet Two-dimensional cooling without repump laser beams through ion motional heating DarkSide-20k sensitivity to light dark matter particles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1