Efficient Photolysis of Multidrug-Resistant Polymicrobial Biofilms.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Science Pub Date : 2024-12-21 DOI:10.1002/advs.202407898
Yongli Li, Yan Dong, ZhengKun Zhang, Zuan-Tao Lin, Chen Liang, Mei X Wu
{"title":"Efficient Photolysis of Multidrug-Resistant Polymicrobial Biofilms.","authors":"Yongli Li, Yan Dong, ZhengKun Zhang, Zuan-Tao Lin, Chen Liang, Mei X Wu","doi":"10.1002/advs.202407898","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic wounds are prone to infections with multidrug-resistant bacteria, forming polymicrobial biofilms that limit treatment options and increase the risk of severe complications. Current cleansing options are insufficient to disrupt and remove tenacious biofilms; antibiotic treatments, on the other hand, often fall short against these biofilm-embedded bacteria. This study explores an non-antibiotic approach that extends beyond conventional porphyrin-based phototherapy by using blue light (BL) in conjunction with ferric ions (Fe(III)) to disrupt and eradicate biofilms. The dual not only degraded biofilm extracellular polymeric substances (EPS) in mono-species and polymicrobial biofilms by specifically targeting carboxyl-containing polysaccharides within the matrix but also exhibited broad-spectrum antimicrobial activity by affecting key components of the outer membrane and cell wall. Bacteria, such as K. pneumoniae, with compromised EPS after photolysis, demonstrated increased susceptibility to macrophage phagocytosis. Disruption of the polymicrobial biofilm structure also enhanced the bacterial susceptibility to bactericidal drugs. Treating wounds infected by mixed-species biofilm in diabetic mice demonstrated a substantial reduction in bacterial colonization and improved tissue repair. The BL-Fe(III) modality offers a safe, efficient alternative for managing chronic wound infections, making it ideal for repeated, non-invasive use at home, especially in resource-limited areas.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2407898"},"PeriodicalIF":14.3000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202407898","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic wounds are prone to infections with multidrug-resistant bacteria, forming polymicrobial biofilms that limit treatment options and increase the risk of severe complications. Current cleansing options are insufficient to disrupt and remove tenacious biofilms; antibiotic treatments, on the other hand, often fall short against these biofilm-embedded bacteria. This study explores an non-antibiotic approach that extends beyond conventional porphyrin-based phototherapy by using blue light (BL) in conjunction with ferric ions (Fe(III)) to disrupt and eradicate biofilms. The dual not only degraded biofilm extracellular polymeric substances (EPS) in mono-species and polymicrobial biofilms by specifically targeting carboxyl-containing polysaccharides within the matrix but also exhibited broad-spectrum antimicrobial activity by affecting key components of the outer membrane and cell wall. Bacteria, such as K. pneumoniae, with compromised EPS after photolysis, demonstrated increased susceptibility to macrophage phagocytosis. Disruption of the polymicrobial biofilm structure also enhanced the bacterial susceptibility to bactericidal drugs. Treating wounds infected by mixed-species biofilm in diabetic mice demonstrated a substantial reduction in bacterial colonization and improved tissue repair. The BL-Fe(III) modality offers a safe, efficient alternative for managing chronic wound infections, making it ideal for repeated, non-invasive use at home, especially in resource-limited areas.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
期刊最新文献
Efficient Photolysis of Multidrug-Resistant Polymicrobial Biofilms. Combined Exsolution and Electrodeposition Strategy for Enhancing Electrocatalytic Activity of Ti-Based Perovskite Oxides in Oxygen and Hydrogen Evolution Reactions. Deep Learning-Enabled STEM Imaging for Precise Single-Molecule Identification in Zeolite Structures. Hierarchical Targeting Nanodrug with Holistic DNA Protection for Effective Treatment of Acute Kidney Injury. RUNX2 Phase Separation Mediates Long-Range Regulation Between Osteoporosis-Susceptibility Variant and XCR1 to Promote Osteoblast Differentiation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1