Yiyuan Wu , Bowen Cai , Jijun Zou , Yiwei Yang , Jinhai Li , Jiangfeng Wan , Xincun Peng , Yu Liu , Dexin Xiao , Bin Tang
{"title":"Simulation analysis of 35 MeV high-power electron accelerator driven white neutron source target","authors":"Yiyuan Wu , Bowen Cai , Jijun Zou , Yiwei Yang , Jinhai Li , Jiangfeng Wan , Xincun Peng , Yu Liu , Dexin Xiao , Bin Tang","doi":"10.1016/j.apradiso.2024.111632","DOIUrl":null,"url":null,"abstract":"<div><div>The white neutron source driven by an electron accelerator utilizes a pulsed electron beam to bombard a target, producing neutrons through photoneutron reactions. The white neutron source of photoneutron reaction has advantages such as compact structure, low cost, capability of generating ultra-short pulse, and wide applications in the resonance energy region, effectively complementing reactor neutron sources and spallation neutron sources. The development of high-current, high-power electron accelerator-driven white neutron sources is of significant importance for neutron science research and nuclear technology applications. However, constructing such a strong-current, high-power electron accelerator-driven white neutron source is complex, and a lot of theoretical simulation work is needed in the early stage to guide the obtaining of a set of optimal source parameters, as well as thermal analysis of the electron bombardment to address target cooling issues. Therefore, in this paper, Monte Carlo algorithm is used to comprehensively simulate and optimize the target station of 35 MeV/ 2 mA@ 70 kW electron accelerator driven white neutron source. Including the structural design of the target, the study of neutron physics parameters, distribution of electron energy deposition, and distribution of radiation damage caused by electrons. In addition, thermal analysis of the target is conducted using the finite element analysis software ANSYS. The research results of this paper will provide important references and bases for guiding the engineering design of high-power electron accelerator-driven white neutron source target stations.</div></div>","PeriodicalId":8096,"journal":{"name":"Applied Radiation and Isotopes","volume":"217 ","pages":"Article 111632"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Radiation and Isotopes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969804324004603","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The white neutron source driven by an electron accelerator utilizes a pulsed electron beam to bombard a target, producing neutrons through photoneutron reactions. The white neutron source of photoneutron reaction has advantages such as compact structure, low cost, capability of generating ultra-short pulse, and wide applications in the resonance energy region, effectively complementing reactor neutron sources and spallation neutron sources. The development of high-current, high-power electron accelerator-driven white neutron sources is of significant importance for neutron science research and nuclear technology applications. However, constructing such a strong-current, high-power electron accelerator-driven white neutron source is complex, and a lot of theoretical simulation work is needed in the early stage to guide the obtaining of a set of optimal source parameters, as well as thermal analysis of the electron bombardment to address target cooling issues. Therefore, in this paper, Monte Carlo algorithm is used to comprehensively simulate and optimize the target station of 35 MeV/ 2 mA@ 70 kW electron accelerator driven white neutron source. Including the structural design of the target, the study of neutron physics parameters, distribution of electron energy deposition, and distribution of radiation damage caused by electrons. In addition, thermal analysis of the target is conducted using the finite element analysis software ANSYS. The research results of this paper will provide important references and bases for guiding the engineering design of high-power electron accelerator-driven white neutron source target stations.
期刊介绍:
Applied Radiation and Isotopes provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and peaceful application of nuclear, radiation and radionuclide techniques in chemistry, physics, biochemistry, biology, medicine, security, engineering and in the earth, planetary and environmental sciences, all including dosimetry. Nuclear techniques are defined in the broadest sense and both experimental and theoretical papers are welcome. They include the development and use of α- and β-particles, X-rays and γ-rays, neutrons and other nuclear particles and radiations from all sources, including radionuclides, synchrotron sources, cyclotrons and reactors and from the natural environment.
The journal aims to publish papers with significance to an international audience, containing substantial novelty and scientific impact. The Editors reserve the rights to reject, with or without external review, papers that do not meet these criteria.
Papers dealing with radiation processing, i.e., where radiation is used to bring about a biological, chemical or physical change in a material, should be directed to our sister journal Radiation Physics and Chemistry.