Synergic Integration of the miRNome, Machine Learning and Bioinformatics for the Identification of Potential Disease-Modifying Agents in Obstructive Sleep Apnea.

IF 8.7 3区 医学 Q1 RESPIRATORY SYSTEM Archivos De Bronconeumologia Pub Date : 2024-12-05 DOI:10.1016/j.arbres.2024.11.011
Thalia Belmonte, Iván D Benitez, María C García-Hidalgo, Marta Molinero, Lucía Pinilla, Olga Mínguez, Rafaela Vaca, Maria Aguilà, Anna Moncusí-Moix, Gerard Torres, Olga Mediano, Juan F Masa, Maria J Masdeu, Blanca Montero-San-Martín, Mercè Ibarz, Pablo Martinez-Camblor, Alberto Gómez-Carballa, Antonio Salas, Federico Martinón-Torres, Ferran Barbé, Manuel Sánchez-de-la-Torre, David de Gonzalo-Calvo
{"title":"Synergic Integration of the miRNome, Machine Learning and Bioinformatics for the Identification of Potential Disease-Modifying Agents in Obstructive Sleep Apnea.","authors":"Thalia Belmonte, Iván D Benitez, María C García-Hidalgo, Marta Molinero, Lucía Pinilla, Olga Mínguez, Rafaela Vaca, Maria Aguilà, Anna Moncusí-Moix, Gerard Torres, Olga Mediano, Juan F Masa, Maria J Masdeu, Blanca Montero-San-Martín, Mercè Ibarz, Pablo Martinez-Camblor, Alberto Gómez-Carballa, Antonio Salas, Federico Martinón-Torres, Ferran Barbé, Manuel Sánchez-de-la-Torre, David de Gonzalo-Calvo","doi":"10.1016/j.arbres.2024.11.011","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Understanding the diverse pathogenetic pathways in obstructive sleep apnea (OSA) is crucial for improving outcomes. microRNA (miRNA) profiling is a promising strategy for elucidating these mechanisms.</p><p><strong>Objective: </strong>To characterize the pathogenetic pathways linked to OSA through the integration of miRNA profiles, machine learning (ML) and bioinformatics.</p><p><strong>Methods: </strong>This multicenter study involved 525 patients with suspected OSA who underwent polysomnography. Plasma miRNAs were quantified via RNA sequencing in the discovery phase, with validation in two subsequent phases using RT-qPCR. Supervised ML feature selection methods and comprehensive bioinformatic analyses were employed. The associations among miRNA targets, OSA and OSA treatment were further explored using publicly available external datasets.</p><p><strong>Results: </strong>Following the discovery and technical validation phases in a subset of patients with and without confirmed OSA (n=53), eleven miRNAs were identified as candidates for the subsequent feature selection process. These miRNAs were then quantified in the remaining population (n=472). Feature selection methods revealed that the miRNAs let-7d-5p, miR-15a-5p and miR-107 were the most informative of OSA. The predominant mechanisms linked to these miRNAs were closely related to cellular events such as cell death, cell differentiation, extracellular remodeling, autophagy and metabolism. One target of let-7d-5p and miR-15a-5p, the TFDP2 gene, exhibited significant differences in gene expression between subjects with and without OSA across three independent databases.</p><p><strong>Conclusion: </strong>Our study identified three plasma miRNAs that, in conjunction with their target genes, provide new insights into OSA pathogenesis and reveal novel regulators and potential drug targets.</p>","PeriodicalId":8339,"journal":{"name":"Archivos De Bronconeumologia","volume":" ","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archivos De Bronconeumologia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.arbres.2024.11.011","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Understanding the diverse pathogenetic pathways in obstructive sleep apnea (OSA) is crucial for improving outcomes. microRNA (miRNA) profiling is a promising strategy for elucidating these mechanisms.

Objective: To characterize the pathogenetic pathways linked to OSA through the integration of miRNA profiles, machine learning (ML) and bioinformatics.

Methods: This multicenter study involved 525 patients with suspected OSA who underwent polysomnography. Plasma miRNAs were quantified via RNA sequencing in the discovery phase, with validation in two subsequent phases using RT-qPCR. Supervised ML feature selection methods and comprehensive bioinformatic analyses were employed. The associations among miRNA targets, OSA and OSA treatment were further explored using publicly available external datasets.

Results: Following the discovery and technical validation phases in a subset of patients with and without confirmed OSA (n=53), eleven miRNAs were identified as candidates for the subsequent feature selection process. These miRNAs were then quantified in the remaining population (n=472). Feature selection methods revealed that the miRNAs let-7d-5p, miR-15a-5p and miR-107 were the most informative of OSA. The predominant mechanisms linked to these miRNAs were closely related to cellular events such as cell death, cell differentiation, extracellular remodeling, autophagy and metabolism. One target of let-7d-5p and miR-15a-5p, the TFDP2 gene, exhibited significant differences in gene expression between subjects with and without OSA across three independent databases.

Conclusion: Our study identified three plasma miRNAs that, in conjunction with their target genes, provide new insights into OSA pathogenesis and reveal novel regulators and potential drug targets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
协同整合miRNome,机器学习和生物信息学用于识别阻塞性睡眠呼吸暂停中潜在的疾病改善剂。
了解阻塞性睡眠呼吸暂停(OSA)的多种发病途径对改善预后至关重要。microRNA (miRNA)谱分析是阐明这些机制的一种很有前途的策略。目的:通过miRNA图谱、机器学习(ML)和生物信息学的整合来表征OSA相关的发病途径。方法:这项多中心研究纳入了525例接受多导睡眠描记术的疑似OSA患者。在发现阶段通过RNA测序对血浆mirna进行量化,并在随后的两个阶段使用RT-qPCR进行验证。采用有监督的机器学习特征选择方法和综合生物信息学分析。使用公开可用的外部数据集进一步探索miRNA靶点、OSA和OSA治疗之间的关系。结果:在一组确诊OSA患者和未确诊OSA患者(n=53)的发现和技术验证阶段之后,确定了11个mirna作为后续特征选择过程的候选mirna。然后在剩余人群(n=472)中对这些mirna进行量化。特征选择方法显示let-7d-5p、miR-15a-5p和miR-107是OSA信息最多的mirna。与这些mirna相关的主要机制与细胞死亡、细胞分化、细胞外重塑、自噬和代谢等细胞事件密切相关。let-7d-5p和miR-15a-5p的一个靶点TFDP2基因在三个独立的数据库中显示出OSA患者和非OSA患者之间基因表达的显著差异。结论:我们的研究发现了三个血浆mirna,它们与其靶基因一起为OSA的发病机制提供了新的见解,并揭示了新的调节因子和潜在的药物靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Archivos De Bronconeumologia
Archivos De Bronconeumologia Medicine-Pulmonary and Respiratory Medicine
CiteScore
3.50
自引率
17.50%
发文量
330
审稿时长
14 days
期刊介绍: Archivos de Bronconeumologia is a scientific journal that specializes in publishing prospective original research articles focusing on various aspects of respiratory diseases, including epidemiology, pathophysiology, clinical practice, surgery, and basic investigation. Additionally, the journal features other types of articles such as reviews, editorials, special articles of interest to the society and editorial board, scientific letters, letters to the editor, and clinical images. Published monthly, the journal comprises 12 regular issues along with occasional supplements containing articles from different sections. All manuscripts submitted to the journal undergo rigorous evaluation by the editors and are subjected to expert peer review. The editorial team, led by the Editor and/or an Associate Editor, manages the peer-review process. Archivos de Bronconeumologia is published monthly in English, facilitating broad dissemination of the latest research findings in the field.
期刊最新文献
Sputum Microbiota Correlates With Metabolome and Clinical Outcomes in Asthma-Bronchiectasis Overlap. Real-world Management of COPD: Dupilumab's Role in Targeting T2 Inflammation as a Treatable Trait. Risk Factors and Outcomes Associated With Polymicrobial Infection in Community-Acquired Pneumonia. Artificial Intelligence in COPD. Evaluation of the Adjustment of Reference Equations for Impulse Oscillometry in Subjects With Down Syndrome Living in Mexico City.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1