SLC25A21 correlates with the prognosis of adult acute myeloid leukemia through inhibiting the growth of leukemia cells via downregulating CXCL8.

IF 8.1 1区 生物学 Q1 CELL BIOLOGY Cell Death & Disease Pub Date : 2024-12-20 DOI:10.1038/s41419-024-07308-y
Yu Liu, Yan Xu, Qianqian Hao, Luyao Shi, Yufei Chen, Yajun Liu, Mengya Li, Yu Zhang, Tao Li, Yafei Li, Zhongxing Jiang, Yanfang Liu, Chong Wang, Zhilei Bian, Lu Yang, Shujuan Wang
{"title":"SLC25A21 correlates with the prognosis of adult acute myeloid leukemia through inhibiting the growth of leukemia cells via downregulating CXCL8.","authors":"Yu Liu, Yan Xu, Qianqian Hao, Luyao Shi, Yufei Chen, Yajun Liu, Mengya Li, Yu Zhang, Tao Li, Yafei Li, Zhongxing Jiang, Yanfang Liu, Chong Wang, Zhilei Bian, Lu Yang, Shujuan Wang","doi":"10.1038/s41419-024-07308-y","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, targeting mitochondrial apoptosis has emerged as a promising therapeutic strategy for Acute Myeloid Leukemia (AML). The SLC25 family of mitochondrial carriers plays a critical role in maintaining mitochondrial function and regulating apoptosis. However, the role of SLC25A21, an oxodicarboxylate carrier, in AML progression and its potential as a prognostic biomarker remain underexplored. This study aimed to further investigate the role, molecular mechanism, and potential clinical value of SLC25A21 in AML progression. The transcript levels of SLC25A21 in bone marrow specimens were analyzed using real-time quantitative polymerase chain reaction. The correlation between SLC25A21 expression and the prognosis of AML was assessed through survival analysis. Findings revealed that SLC25A21 was downregulated in adult AML, and the low expression of SLC25A21 was correlated with worse prognosis for AML patients. Furthermore, overexpression of SLC25A21 inhibited cell proliferation and cell cycle progression, and was correlated with apoptosis through mitochondrial apoptosis signaling pathway. C-X-C motif chemokine ligand 8 (CXCL8) was identified as a downstream target of SLC25A21. These functions of SLC25A21 could be rescued by the overexpression of CXCL8. Moreover, SLC25A21 overexpression significantly suppressed the growth of xenograft tumors. In conclusion, the low SLC25A21 expression is correlated with poor clinical outcome. The overexpression of SLC25A21 inhibited the AML cell survival and proliferation by dysregulating the expression of CXCL8. SLC25A21 might be a potential prognostic marker and a treatment target for AML.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"15 12","pages":"921"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-024-07308-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, targeting mitochondrial apoptosis has emerged as a promising therapeutic strategy for Acute Myeloid Leukemia (AML). The SLC25 family of mitochondrial carriers plays a critical role in maintaining mitochondrial function and regulating apoptosis. However, the role of SLC25A21, an oxodicarboxylate carrier, in AML progression and its potential as a prognostic biomarker remain underexplored. This study aimed to further investigate the role, molecular mechanism, and potential clinical value of SLC25A21 in AML progression. The transcript levels of SLC25A21 in bone marrow specimens were analyzed using real-time quantitative polymerase chain reaction. The correlation between SLC25A21 expression and the prognosis of AML was assessed through survival analysis. Findings revealed that SLC25A21 was downregulated in adult AML, and the low expression of SLC25A21 was correlated with worse prognosis for AML patients. Furthermore, overexpression of SLC25A21 inhibited cell proliferation and cell cycle progression, and was correlated with apoptosis through mitochondrial apoptosis signaling pathway. C-X-C motif chemokine ligand 8 (CXCL8) was identified as a downstream target of SLC25A21. These functions of SLC25A21 could be rescued by the overexpression of CXCL8. Moreover, SLC25A21 overexpression significantly suppressed the growth of xenograft tumors. In conclusion, the low SLC25A21 expression is correlated with poor clinical outcome. The overexpression of SLC25A21 inhibited the AML cell survival and proliferation by dysregulating the expression of CXCL8. SLC25A21 might be a potential prognostic marker and a treatment target for AML.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Death & Disease
Cell Death & Disease CELL BIOLOGY-
CiteScore
15.10
自引率
2.20%
发文量
935
审稿时长
2 months
期刊介绍: Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism. Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following: Experimental medicine Cancer Immunity Internal medicine Neuroscience Cancer metabolism
期刊最新文献
TGFβ signaling sensitizes MEKi-resistant human melanoma to targeted therapy-induced apoptosis. FXR-regulated COX6A2 triggers mitochondrial apoptosis of pancreatic β-cell in type 2 diabetes. Correction: Nicotine-induced CHRNA5 activation modulates CES1 expression, impacting head and neck squamous cell carcinoma recurrence and metastasis via MEK/ERK pathway. PI(4,5)P2 alleviates colitis by inhibiting intestinal epithelial cell pyroptosis through NNMT-mediated RBP4 m6A modification. SLC25A21 correlates with the prognosis of adult acute myeloid leukemia through inhibiting the growth of leukemia cells via downregulating CXCL8.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1