Recent Developments on 2D-Materials for Gas Sensing Application.

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Journal of Physics: Condensed Matter Pub Date : 2024-12-20 DOI:10.1088/1361-648X/ada242
Chandra Prakash, Ankit K Yadav, Minakshi Sharma, Vijay K Singh, Ambesh Dixit
{"title":"Recent Developments on 2D-Materials for Gas Sensing Application.","authors":"Chandra Prakash, Ankit K Yadav, Minakshi Sharma, Vijay K Singh, Ambesh Dixit","doi":"10.1088/1361-648X/ada242","DOIUrl":null,"url":null,"abstract":"<p><p>The industrialization has severely impacted the ecosystem because of intensive use of chemicals and gases, causing the undesired outcomes such as hazardous gases, e.g., carbon monoxide (CO), nitrox oxide (NOx), ammonia (NH3), hydrogen (H2), hydrogen sulfide (H2S) and even volatile organic compounds. These hazardous gases are not only impacting the living beings but also the entire ecosystem. Thus, it becomes essential to monitor these gases for their efficient management. There are continuous efforts to realize such sensors, which rely on the functional materials properties. The widely used such sensors use metal oxide nanomaterials. However, these are not very sensitive and operate at higher temperatures. In contrast, two-dimensional (2D) materials such as Graphene, Borophene, MXenes, transition metal dichalcogenides (TMDs) including doping, functionalization, and heterostructures offer unique physical, chemical, and optoelectronic properties. The chemical properties with high specific surface area of 2D materials make them suitable for gas sensing applications. The present article covers the recent developments on 2D-TMDs layered material, including MoS2, WS2, h-BN, and Graphene, as well as their heterostructures, for gas sensing applications. The article also emphasizes their synthesis and characterization techniques, especially for 2D materials. The electronic properties of these materials are highly sensitive to any chemical changes, resulting in significant changes in their resistance. It led to the development of the highly scalable chemiresistive-based gas sensor. The sensing parameters such as sensitivity, selectivity, gas concentration, limit of detection, temperature, humidity, response, reproducibility, stability, recovery, and response time are discussed in detail to understand the gas sensing characteristics of these 2D materials. The article also includes the past developments, current status, and future scope of these materials as highly efficient gas sensors. Thus, this review article may lead the researchers to design and develop highly sensitive gas sensors based on 2D materials.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ada242","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

The industrialization has severely impacted the ecosystem because of intensive use of chemicals and gases, causing the undesired outcomes such as hazardous gases, e.g., carbon monoxide (CO), nitrox oxide (NOx), ammonia (NH3), hydrogen (H2), hydrogen sulfide (H2S) and even volatile organic compounds. These hazardous gases are not only impacting the living beings but also the entire ecosystem. Thus, it becomes essential to monitor these gases for their efficient management. There are continuous efforts to realize such sensors, which rely on the functional materials properties. The widely used such sensors use metal oxide nanomaterials. However, these are not very sensitive and operate at higher temperatures. In contrast, two-dimensional (2D) materials such as Graphene, Borophene, MXenes, transition metal dichalcogenides (TMDs) including doping, functionalization, and heterostructures offer unique physical, chemical, and optoelectronic properties. The chemical properties with high specific surface area of 2D materials make them suitable for gas sensing applications. The present article covers the recent developments on 2D-TMDs layered material, including MoS2, WS2, h-BN, and Graphene, as well as their heterostructures, for gas sensing applications. The article also emphasizes their synthesis and characterization techniques, especially for 2D materials. The electronic properties of these materials are highly sensitive to any chemical changes, resulting in significant changes in their resistance. It led to the development of the highly scalable chemiresistive-based gas sensor. The sensing parameters such as sensitivity, selectivity, gas concentration, limit of detection, temperature, humidity, response, reproducibility, stability, recovery, and response time are discussed in detail to understand the gas sensing characteristics of these 2D materials. The article also includes the past developments, current status, and future scope of these materials as highly efficient gas sensors. Thus, this review article may lead the researchers to design and develop highly sensitive gas sensors based on 2D materials.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
期刊最新文献
Drastic enhancement of electronic correlations induced by hydrogen insertion in the cerium intermetallic compound CeFeSi. Effect of Fe doping on the electronic properties of CoSn Kagome semimetal. A remarkable match of optical response in the amorphous-crystalline and zinc blende-rock salt phase pairs of GeTe. Suppression of hyperuniformity in hydrodynamic scalar active field theories. Recent Developments on 2D-Materials for Gas Sensing Application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1