Deep learning for endometrial cancer subtyping and predicting tumor mutational burden from histopathological slides

IF 6.8 1区 医学 Q1 ONCOLOGY NPJ Precision Oncology Pub Date : 2024-12-21 DOI:10.1038/s41698-024-00766-9
Ching-Wei Wang, Nabila Puspita Firdi, Yu-Ching Lee, Tzu-Chiao Chu, Hikam Muzakky, Tzu-Chien Liu, Po-Jen Lai, Tai-Kuang Chao
{"title":"Deep learning for endometrial cancer subtyping and predicting tumor mutational burden from histopathological slides","authors":"Ching-Wei Wang, Nabila Puspita Firdi, Yu-Ching Lee, Tzu-Chiao Chu, Hikam Muzakky, Tzu-Chien Liu, Po-Jen Lai, Tai-Kuang Chao","doi":"10.1038/s41698-024-00766-9","DOIUrl":null,"url":null,"abstract":"Endometrial cancer (EC) diagnosis traditionally relies on tumor morphology and nuclear grade, but personalized therapy demands a deeper understanding of tumor mutational burden (TMB), i.e., a key biomarker for immune checkpoint inhibition and immunotherapy response. Traditional TMB prediction methods, such as sequencing exomes or whole genomes, are costly and often unavailable in clinical settings. We present the first TR-MAMIL deep learning framework to predict TMB status and classify the EC cancer subtype directly from H&E-stained WSIs, enabling effective personalized immunotherapy planning and prognostic refinement of EC patients. Our models were evaluated on a large dataset from The Cancer Genome Atlas. TR-MAMIL performed exceptionally well in classifying aggressive and non-aggressive EC, as well as predicting TMB, outperforming seven state-of-the-art approaches. It also performed well in classifying normal and abnormal p53 mutations in EC using H&E WSIs. Kaplan–Meier analysis further demonstrated TR-MAMIL’s ability to differentiate patients with longer survival in the aggressive EC.","PeriodicalId":19433,"journal":{"name":"NPJ Precision Oncology","volume":" ","pages":"1-18"},"PeriodicalIF":6.8000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41698-024-00766-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Precision Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41698-024-00766-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Endometrial cancer (EC) diagnosis traditionally relies on tumor morphology and nuclear grade, but personalized therapy demands a deeper understanding of tumor mutational burden (TMB), i.e., a key biomarker for immune checkpoint inhibition and immunotherapy response. Traditional TMB prediction methods, such as sequencing exomes or whole genomes, are costly and often unavailable in clinical settings. We present the first TR-MAMIL deep learning framework to predict TMB status and classify the EC cancer subtype directly from H&E-stained WSIs, enabling effective personalized immunotherapy planning and prognostic refinement of EC patients. Our models were evaluated on a large dataset from The Cancer Genome Atlas. TR-MAMIL performed exceptionally well in classifying aggressive and non-aggressive EC, as well as predicting TMB, outperforming seven state-of-the-art approaches. It also performed well in classifying normal and abnormal p53 mutations in EC using H&E WSIs. Kaplan–Meier analysis further demonstrated TR-MAMIL’s ability to differentiate patients with longer survival in the aggressive EC.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度学习用于子宫内膜癌亚型分型和从组织病理切片预测肿瘤突变负担。
子宫内膜癌(EC)的诊断传统上依赖于肿瘤形态学和核分级,但个性化治疗需要更深入地了解肿瘤突变负担(tumor mutational burden, TMB),即免疫检查点抑制和免疫治疗反应的关键生物标志物。传统的TMB预测方法,如外显子组测序或全基因组测序,是昂贵的,而且通常在临床环境中不可用。我们提出了第一个TR-MAMIL深度学习框架来预测TMB状态,并直接从h&e染色的wsi中对EC癌症亚型进行分类,从而实现有效的个性化免疫治疗计划和EC患者的预后改进。我们的模型是在来自癌症基因组图谱的大型数据集上进行评估的。TR-MAMIL在对侵袭性和非侵袭性EC进行分类以及预测TMB方面表现非常好,优于七种最先进的方法。H&E WSIs对EC中正常和异常p53突变的分类也有很好的效果。Kaplan-Meier分析进一步证明了TR-MAMIL在侵袭性EC中区分生存期较长的患者的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.90
自引率
1.30%
发文量
87
审稿时长
18 weeks
期刊介绍: Online-only and open access, npj Precision Oncology is an international, peer-reviewed journal dedicated to showcasing cutting-edge scientific research in all facets of precision oncology, spanning from fundamental science to translational applications and clinical medicine.
期刊最新文献
Real life outcome analysis of breast cancer brain metastases treated with Trastuzumab Deruxtecan. A multi-modal deep learning model for prediction of Ki-67 for meningiomas using pretreatment MR images. Defective homologous recombination and genomic instability predict increased responsiveness to carbon ion radiotherapy in pancreatic cancer. Integrins identified as potential prognostic markers in osteosarcoma through multi-omics and multi-dataset analysis. Prediction of post-treatment recurrence in early-stage breast cancer using deep-learning with mid-infrared chemical histopathological imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1