Feature-interactive Siamese graph encoder-based image analysis to predict STAS from histopathology images in lung cancer

IF 6.8 1区 医学 Q1 ONCOLOGY NPJ Precision Oncology Pub Date : 2024-12-20 DOI:10.1038/s41698-024-00771-y
Liangrui Pan, Qingchun Liang, Wenwu Zeng, Yijun Peng, Zhenyu Zhao, Yiyi Liang, Jiadi Luo, Xiang Wang, Shaoliang Peng
{"title":"Feature-interactive Siamese graph encoder-based image analysis to predict STAS from histopathology images in lung cancer","authors":"Liangrui Pan, Qingchun Liang, Wenwu Zeng, Yijun Peng, Zhenyu Zhao, Yiyi Liang, Jiadi Luo, Xiang Wang, Shaoliang Peng","doi":"10.1038/s41698-024-00771-y","DOIUrl":null,"url":null,"abstract":"Spread through air spaces (STAS) is a distinct invasion pattern in lung cancer, crucial for prognosis assessment and guiding surgical decisions. Histopathology is the gold standard for STAS detection, yet traditional methods are subjective, time-consuming, and prone to misdiagnosis, limiting large-scale applications. We present VERN, an image analysis model utilizing a feature-interactive Siamese graph encoder to predict STAS from lung cancer histopathological images. VERN captures spatial topological features with feature sharing and skip connections to enhance model training. Using 1,546 histopathology slides, we built a large single-cohort STAS lung cancer dataset. VERN achieved an AUC of 0.9215 in internal validation and AUCs of 0.8275 and 0.8829 in frozen and paraffin-embedded test sections, respectively, demonstrating clinical-grade performance. Validated on a single-cohort and three external datasets, VERN showed robust predictive performance and generalizability, providing an open platform ( http://plr.20210706.xyz:5000/ ) to enhance STAS diagnosis efficiency and accuracy.","PeriodicalId":19433,"journal":{"name":"NPJ Precision Oncology","volume":" ","pages":"1-12"},"PeriodicalIF":6.8000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41698-024-00771-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Precision Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41698-024-00771-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Spread through air spaces (STAS) is a distinct invasion pattern in lung cancer, crucial for prognosis assessment and guiding surgical decisions. Histopathology is the gold standard for STAS detection, yet traditional methods are subjective, time-consuming, and prone to misdiagnosis, limiting large-scale applications. We present VERN, an image analysis model utilizing a feature-interactive Siamese graph encoder to predict STAS from lung cancer histopathological images. VERN captures spatial topological features with feature sharing and skip connections to enhance model training. Using 1,546 histopathology slides, we built a large single-cohort STAS lung cancer dataset. VERN achieved an AUC of 0.9215 in internal validation and AUCs of 0.8275 and 0.8829 in frozen and paraffin-embedded test sections, respectively, demonstrating clinical-grade performance. Validated on a single-cohort and three external datasets, VERN showed robust predictive performance and generalizability, providing an open platform ( http://plr.20210706.xyz:5000/ ) to enhance STAS diagnosis efficiency and accuracy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于特征交互暹罗图编码器的图像分析预测肺癌组织病理学图像中的STAS。
通过空气间隙扩散(STAS)是肺癌的独特侵袭模式,对预后评估和指导手术决策至关重要。组织病理学是STAS检测的金标准,但传统方法主观、耗时且容易误诊,限制了大规模应用。我们提出了VERN,一个图像分析模型,利用特征交互的暹罗图编码器来预测肺癌组织病理图像中的STAS。VERN通过特征共享和跳过连接来捕获空间拓扑特征,以增强模型训练。利用1546张组织病理学切片,我们建立了一个大型的单队列STAS肺癌数据集。VERN在内部验证的AUC为0.9215,冷冻切片和石蜡包埋切片的AUC分别为0.8275和0.8829,具有临床级的性能。在单队列和三个外部数据集上验证,VERN显示出强大的预测性能和通用性,为提高STAS诊断效率和准确性提供了一个开放平台(http://plr.20210706.xyz:5000/)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.90
自引率
1.30%
发文量
87
审稿时长
18 weeks
期刊介绍: Online-only and open access, npj Precision Oncology is an international, peer-reviewed journal dedicated to showcasing cutting-edge scientific research in all facets of precision oncology, spanning from fundamental science to translational applications and clinical medicine.
期刊最新文献
Real life outcome analysis of breast cancer brain metastases treated with Trastuzumab Deruxtecan. A multi-modal deep learning model for prediction of Ki-67 for meningiomas using pretreatment MR images. Defective homologous recombination and genomic instability predict increased responsiveness to carbon ion radiotherapy in pancreatic cancer. Integrins identified as potential prognostic markers in osteosarcoma through multi-omics and multi-dataset analysis. Prediction of post-treatment recurrence in early-stage breast cancer using deep-learning with mid-infrared chemical histopathological imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1