Mengjuan Chai, Jingjing Han, Qianru Yan, Renxuan Xue, Jiuxing Lu, Yonghua Li, Yan Li
{"title":"Cloning the promoter of the sucrose transporter gene PsSUT2 and screening its upstream transcription factors in tree peony.","authors":"Mengjuan Chai, Jingjing Han, Qianru Yan, Renxuan Xue, Jiuxing Lu, Yonghua Li, Yan Li","doi":"10.1016/j.jplph.2024.154410","DOIUrl":null,"url":null,"abstract":"<p><p>Sucrose is an essential energy substance for tree peony (Paeonia Suffruticosa) floral organ development. However, little is known about the sucrose regulatory network in tree peony. In this study, the promoter sequence of the tree peony sucrose transporter gene PsSUT2 was cloned. Through cis-acting elements analysis and weighted gene co-expression network analysis (WGCNA), 6 transcription factors potentially regulating PsSUT2 were screened. Expression analysis revealed that the 6 transcription factors had similar expression trends with the PsSUT2 in all parts of peony at the full bloom stage. Furthermore, a yeast one-hybrid assay revealed that PsMYB20 and PsMADS9 bind to the PsSUT2 promoter. Dual-luciferase reporter assay demonstrated that PsMYB20 and PsMADS9 could activate PsSUT2 expression. Taken together, our findings suggest that PsMYB20 and PsMADS9 positively regulate PsSUT2, laying the foundation for the construction of a gene network for sucrose regulation in tree peony.</p>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"304 ","pages":"154410"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of plant physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jplph.2024.154410","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Sucrose is an essential energy substance for tree peony (Paeonia Suffruticosa) floral organ development. However, little is known about the sucrose regulatory network in tree peony. In this study, the promoter sequence of the tree peony sucrose transporter gene PsSUT2 was cloned. Through cis-acting elements analysis and weighted gene co-expression network analysis (WGCNA), 6 transcription factors potentially regulating PsSUT2 were screened. Expression analysis revealed that the 6 transcription factors had similar expression trends with the PsSUT2 in all parts of peony at the full bloom stage. Furthermore, a yeast one-hybrid assay revealed that PsMYB20 and PsMADS9 bind to the PsSUT2 promoter. Dual-luciferase reporter assay demonstrated that PsMYB20 and PsMADS9 could activate PsSUT2 expression. Taken together, our findings suggest that PsMYB20 and PsMADS9 positively regulate PsSUT2, laying the foundation for the construction of a gene network for sucrose regulation in tree peony.
期刊介绍:
The Journal of Plant Physiology is a broad-spectrum journal that welcomes high-quality submissions in all major areas of plant physiology, including plant biochemistry, functional biotechnology, computational and synthetic plant biology, growth and development, photosynthesis and respiration, transport and translocation, plant-microbe interactions, biotic and abiotic stress. Studies are welcome at all levels of integration ranging from molecules and cells to organisms and their environments and are expected to use state-of-the-art methodologies. Pure gene expression studies are not within the focus of our journal. To be considered for publication, papers must significantly contribute to the mechanistic understanding of physiological processes, and not be merely descriptive, or confirmatory of previous results. We encourage the submission of papers that explore the physiology of non-model as well as accepted model species and those that bridge basic and applied research. For instance, studies on agricultural plants that show new physiological mechanisms to improve agricultural efficiency are welcome. Studies performed under uncontrolled situations (e.g. field conditions) not providing mechanistic insight will not be considered for publication.
The Journal of Plant Physiology publishes several types of articles: Original Research Articles, Reviews, Perspectives Articles, and Short Communications. Reviews and Perspectives will be solicited by the Editors; unsolicited reviews are also welcome but only from authors with a strong track record in the field of the review. Original research papers comprise the majority of published contributions.