{"title":"Root metabolites regulated by FERONIA promote phosphorus-solubilizing rhizobacteria enrichment induced by Arabidopsis thaliana coping with phosphorus deficiency.","authors":"Lingyun Zhang, Xuelei Deng, Jia Xiao, Wei Zhao, Pan Zou, Ruizhe Liao, Keying Xie, Hongdong Liao","doi":"10.1016/j.micres.2024.128030","DOIUrl":null,"url":null,"abstract":"<p><p>The recruitment of the phosphorus-solubilizing rhizobacteria plays an important role in response to phosphorus deficiency. Through the treatments of Arabidopsis thaliana (Col-0) and the FERONIA (FER) functional deficient mutants (fer-4 and fer-5) with the soil suspension in various phosphorus conditions, we discovered that FER could promote phosphorus-solubilizing rhizobacteria enrichment to rescue the defective plant during phosphorus deficiency. The amplicon sequencing data reflected that the phosphorus-solubilizing rhizobacterial genus Alcaligenes was significantly enriched of Col-0 than fer-4 in low phosphorus conditions. Metabolomics analysis revealed that there were more α-D-Glucose (α-D-Glc) and L-Leucine (L-Leu) in Col-0 roots than those in fer-4 roots. The alterations of α-D-Glc and L-Leu mediated by FER had high-positive correlations to the enrichment of Alcaligenes. We successfully isolated a phosphorus-solubilizing rhizobacteria strain identified as Alcaligenes faecalis PSB15. The α-D-Glc and L-Leu could promote the strain PSB15 growth on LB agar plates and assist fer-4 in recovering from phosphorus starvation in the low phosphorus (LP) liquid medium vermiculite with tricalcium phosphate (TCP). The α-D-Glc and L-Leu could be considered as promising compounds to enrich beneficial phosphorus-solubilizing rhizobacteria, such as Alcaligenes, and provide a reference for overcoming the plight of phosphorus deficiency in crops in the field of agricultural production in the future.</p>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"292 ","pages":"128030"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiological research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.micres.2024.128030","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The recruitment of the phosphorus-solubilizing rhizobacteria plays an important role in response to phosphorus deficiency. Through the treatments of Arabidopsis thaliana (Col-0) and the FERONIA (FER) functional deficient mutants (fer-4 and fer-5) with the soil suspension in various phosphorus conditions, we discovered that FER could promote phosphorus-solubilizing rhizobacteria enrichment to rescue the defective plant during phosphorus deficiency. The amplicon sequencing data reflected that the phosphorus-solubilizing rhizobacterial genus Alcaligenes was significantly enriched of Col-0 than fer-4 in low phosphorus conditions. Metabolomics analysis revealed that there were more α-D-Glucose (α-D-Glc) and L-Leucine (L-Leu) in Col-0 roots than those in fer-4 roots. The alterations of α-D-Glc and L-Leu mediated by FER had high-positive correlations to the enrichment of Alcaligenes. We successfully isolated a phosphorus-solubilizing rhizobacteria strain identified as Alcaligenes faecalis PSB15. The α-D-Glc and L-Leu could promote the strain PSB15 growth on LB agar plates and assist fer-4 in recovering from phosphorus starvation in the low phosphorus (LP) liquid medium vermiculite with tricalcium phosphate (TCP). The α-D-Glc and L-Leu could be considered as promising compounds to enrich beneficial phosphorus-solubilizing rhizobacteria, such as Alcaligenes, and provide a reference for overcoming the plight of phosphorus deficiency in crops in the field of agricultural production in the future.
期刊介绍:
Microbiological Research is devoted to publishing reports on prokaryotic and eukaryotic microorganisms such as yeasts, fungi, bacteria, archaea, and protozoa. Research on interactions between pathogenic microorganisms and their environment or hosts are also covered.