MEGA12: Molecular Evolutionary Genetic Analysis version 12 for adaptive and green computing.

IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular biology and evolution Pub Date : 2024-12-21 DOI:10.1093/molbev/msae263
Sudhir Kumar, Glen Stecher, Michael Suleski, Maxwell Sanderford, Sudip Sharma, Koichiro Tamura
{"title":"MEGA12: Molecular Evolutionary Genetic Analysis version 12 for adaptive and green computing.","authors":"Sudhir Kumar, Glen Stecher, Michael Suleski, Maxwell Sanderford, Sudip Sharma, Koichiro Tamura","doi":"10.1093/molbev/msae263","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce the 12th version of the Molecular Evolutionary Genetics Analysis (MEGA) software. This latest version brings many significant improvements by reducing the computational time needed for selecting optimal substitution models and conducting bootstrap tests on phylogenies using maximum likelihood (ML) methods. These improvements are achieved by implementing heuristics that minimize likely unnecessary computations. Analyses of empirical and simulated datasets show substantial time savings by using these heuristics without compromising the accuracy of results. MEGA12 also implements an evolutionary sparse learning approach to identify fragile clades and associated sequences in evolutionary trees inferred through phylogenomic analyses. In addition, this version includes fine-grained parallelization for ML analyses, support for high-resolution monitors, and an enhanced Tree Explorer. MEGA12 can be downloaded from https://www.megasoftware.net.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biology and evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/molbev/msae263","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce the 12th version of the Molecular Evolutionary Genetics Analysis (MEGA) software. This latest version brings many significant improvements by reducing the computational time needed for selecting optimal substitution models and conducting bootstrap tests on phylogenies using maximum likelihood (ML) methods. These improvements are achieved by implementing heuristics that minimize likely unnecessary computations. Analyses of empirical and simulated datasets show substantial time savings by using these heuristics without compromising the accuracy of results. MEGA12 also implements an evolutionary sparse learning approach to identify fragile clades and associated sequences in evolutionary trees inferred through phylogenomic analyses. In addition, this version includes fine-grained parallelization for ML analyses, support for high-resolution monitors, and an enhanced Tree Explorer. MEGA12 can be downloaded from https://www.megasoftware.net.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular biology and evolution
Molecular biology and evolution 生物-进化生物学
CiteScore
19.70
自引率
3.70%
发文量
257
审稿时长
1 months
期刊介绍: Molecular Biology and Evolution Journal Overview: Publishes research at the interface of molecular (including genomics) and evolutionary biology Considers manuscripts containing patterns, processes, and predictions at all levels of organization: population, taxonomic, functional, and phenotypic Interested in fundamental discoveries, new and improved methods, resources, technologies, and theories advancing evolutionary research Publishes balanced reviews of recent developments in genome evolution and forward-looking perspectives suggesting future directions in molecular evolution applications.
期刊最新文献
Quantifying the evolutionary dynamics of structure and content in closely-related E. coli genomes. A de novo gene promotes seed germination under drought stress in Arabidopsis. MixtureFinder: Estimating DNA mixture models for phylogenetic analyses. MEGA12: Molecular Evolutionary Genetic Analysis version 12 for adaptive and green computing. Circadian rhythm mechanisms underlying convergent adaptation of unihemispheric slow-wave sleep in marine mammals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1