Automated measurement of cardiothoracic ratio based on semantic segmentation integration model using deep learning.

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Medical & Biological Engineering & Computing Pub Date : 2024-12-21 DOI:10.1007/s11517-024-03263-0
Jiajun Feng, Yuqian Huang, Zhenbin Hu, Junjie Guo
{"title":"Automated measurement of cardiothoracic ratio based on semantic segmentation integration model using deep learning.","authors":"Jiajun Feng, Yuqian Huang, Zhenbin Hu, Junjie Guo","doi":"10.1007/s11517-024-03263-0","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of this study is to investigate the efficacy of the semantic segmentation model in predicting cardiothoracic ratio (CTR) and heart enlargement and compare its consistency with the reference standard. A total of 650 consecutive chest radiographs from our center and 756 public datasets were retrospectively included to develop a segmentation model. Three semantic segmentation models were used to segment the heart and lungs. A soft voting integration method was used to improve the segmentation accuracy and measure CTR automatically. Bland-Altman and Pearson's correlation analyses were used to compare the consistency and correlation between CTR automated measurements and reference standards. CTR automated measurements were compared with reference standard using the Wilcoxon signed-rank test. The diagnostic efficacy of the model for heart enlargement was evaluated using the AUC. The soft voting integration model was strongly correlated (r = 0.98, P < 0.001) and consistent (average standard deviation of 0.0048 cm/s) with the reference standard. No statistical difference between CTR automated measurement and reference standard in healthy subjects, pneumothorax, pleural effusion, and lung mass patients (P > 0.05). In the external test data, the accuracy, sensitivity, specificity, and AUC in determining heart enlargement were 96.0%, 79.5%, 99.1%, and 0.988, respectively. The deep learning method was calculated faster per chest radiograph than the average time manually calculated by the radiologist (about 2 s vs 25.75 ± 4.35 s, respectively, P < 0.001). This study provides a semantic segmentation integration model of chest radiographs to measure CTR and determine heart enlargement with chest structure changes due to different chest diseases effectively, faster, and accurately. The development of the automated segmentation integration model is helpful in improving the consistency of CTR measurement, reducing the workload of radiologists, and improving their work efficiency.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03263-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of this study is to investigate the efficacy of the semantic segmentation model in predicting cardiothoracic ratio (CTR) and heart enlargement and compare its consistency with the reference standard. A total of 650 consecutive chest radiographs from our center and 756 public datasets were retrospectively included to develop a segmentation model. Three semantic segmentation models were used to segment the heart and lungs. A soft voting integration method was used to improve the segmentation accuracy and measure CTR automatically. Bland-Altman and Pearson's correlation analyses were used to compare the consistency and correlation between CTR automated measurements and reference standards. CTR automated measurements were compared with reference standard using the Wilcoxon signed-rank test. The diagnostic efficacy of the model for heart enlargement was evaluated using the AUC. The soft voting integration model was strongly correlated (r = 0.98, P < 0.001) and consistent (average standard deviation of 0.0048 cm/s) with the reference standard. No statistical difference between CTR automated measurement and reference standard in healthy subjects, pneumothorax, pleural effusion, and lung mass patients (P > 0.05). In the external test data, the accuracy, sensitivity, specificity, and AUC in determining heart enlargement were 96.0%, 79.5%, 99.1%, and 0.988, respectively. The deep learning method was calculated faster per chest radiograph than the average time manually calculated by the radiologist (about 2 s vs 25.75 ± 4.35 s, respectively, P < 0.001). This study provides a semantic segmentation integration model of chest radiographs to measure CTR and determine heart enlargement with chest structure changes due to different chest diseases effectively, faster, and accurately. The development of the automated segmentation integration model is helpful in improving the consistency of CTR measurement, reducing the workload of radiologists, and improving their work efficiency.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
期刊最新文献
Performance investigation of MVMD-MSI algorithm in frequency recognition for SSVEP-based brain-computer interface and its application in robotic arm control. Evaluation of a cognition-sensitive spatial virtual reality game for Alzheimer's disease. Advancement in medical report generation: current practices, challenges, and future directions. Automated measurement of cardiothoracic ratio based on semantic segmentation integration model using deep learning. Predicting hospitalization with LLMs from health insurance data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1