{"title":"Identification of multiple miRNA-encoded peptide reveals OsmiPEP162a putatively stabilizes OsMIR162 in rice.","authors":"Jianping Zhou, Rui Zhang, Qinqin Han, Hongjun Yang, Wei Wang, Yibo Wang, Xuelian Zheng, Fan Luo, Guangze Cai, Yong Zhang","doi":"10.1007/s00299-024-03380-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>MiPEPs regulate growth, development and stress response. Identification of rice miPEPs plays a crucial role in elucidation of molecular functions of rice miPEPs and rice genetic improvement. MicroRNAs (miRNAs) are derivatives of primary miRNAs (pri-miRNAs) and govern the expression of target genes. Plant pri-miRNAs encode regulatory peptides known as miPEPs, which specifically boost the transcription of their originating pri-miRNA. Although there are hundreds of pri-miRNAs in rice, research on whether they encode functional peptides is limited. In this study, we identified 10 miPEPs using a transient protoplast expression system. Among these, we focused our attention on OsmiPEP162a, which influences growth. OsmiPEP162a-edited plants exhibited reduced plant height, similar to mature OsmiR162-edited plants. Transcriptome-focused molecular analysis unveiled significant alterations in transcription profiles following the depletion of OsmiPEP162a. In addition, knocking out OsmiPEP162a led to decreased expression levels of mature OsMIR162a and OsMIR162b. This study suggests that OsmiPEP162a potentially plays a crucial role in stabilizing mature OsMIR162.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 1","pages":"9"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-024-03380-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Key message: MiPEPs regulate growth, development and stress response. Identification of rice miPEPs plays a crucial role in elucidation of molecular functions of rice miPEPs and rice genetic improvement. MicroRNAs (miRNAs) are derivatives of primary miRNAs (pri-miRNAs) and govern the expression of target genes. Plant pri-miRNAs encode regulatory peptides known as miPEPs, which specifically boost the transcription of their originating pri-miRNA. Although there are hundreds of pri-miRNAs in rice, research on whether they encode functional peptides is limited. In this study, we identified 10 miPEPs using a transient protoplast expression system. Among these, we focused our attention on OsmiPEP162a, which influences growth. OsmiPEP162a-edited plants exhibited reduced plant height, similar to mature OsmiR162-edited plants. Transcriptome-focused molecular analysis unveiled significant alterations in transcription profiles following the depletion of OsmiPEP162a. In addition, knocking out OsmiPEP162a led to decreased expression levels of mature OsMIR162a and OsMIR162b. This study suggests that OsmiPEP162a potentially plays a crucial role in stabilizing mature OsMIR162.
期刊介绍:
Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as:
- genomics and genetics
- metabolism
- cell biology
- abiotic and biotic stress
- phytopathology
- gene transfer and expression
- molecular pharming
- systems biology
- nanobiotechnology
- genome editing
- phenomics and synthetic biology
The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.