From Bayes to Darwin: Evolutionary search as an exaptation from sampling-based Bayesian inference.

IF 1.9 4区 数学 Q2 BIOLOGY Journal of Theoretical Biology Pub Date : 2024-12-19 DOI:10.1016/j.jtbi.2024.112032
Márton Csillag, Hamza Giaffar, Eörs Szathmáry, Mauro Santos, Dániel Czégel
{"title":"From Bayes to Darwin: Evolutionary search as an exaptation from sampling-based Bayesian inference.","authors":"Márton Csillag, Hamza Giaffar, Eörs Szathmáry, Mauro Santos, Dániel Czégel","doi":"10.1016/j.jtbi.2024.112032","DOIUrl":null,"url":null,"abstract":"<p><p>Building on the algorithmic equivalence between finite population replicator dynamics and particle filtering based approximation of Bayesian inference, we design a computational model to demonstrate the emergence of Darwinian evolution over representational units when collectives of units are selected to infer statistics of high-dimensional combinatorial environments. The non-Darwinian starting point is two units undergoing a few cycles of noisy, selection-dependent information transmission, corresponding to a serial (one comparison per cycle), non-cumulative process without heredity. Selection for accurate Bayesian inference at the collective level induces an adaptive path to the emergence of Darwinian evolution within the collectives, capable of maintaining and iteratively improving upon complex combinatorial information. When collectives are themselves Darwinian, this mechanism amounts to a top-down (filial) transition in individuality. We suggest that such selection mechanism can explain the hypothesized emergence of fast timescale Darwinian dynamics over a population of neural representations within animal and human brains, endowing them with combinatorial planning capabilities. Further possible physical implementations include prebiotic collectives of non-replicating molecules and reinforcement learning agents with parallel policy search.</p>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":" ","pages":"112032"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jtbi.2024.112032","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Building on the algorithmic equivalence between finite population replicator dynamics and particle filtering based approximation of Bayesian inference, we design a computational model to demonstrate the emergence of Darwinian evolution over representational units when collectives of units are selected to infer statistics of high-dimensional combinatorial environments. The non-Darwinian starting point is two units undergoing a few cycles of noisy, selection-dependent information transmission, corresponding to a serial (one comparison per cycle), non-cumulative process without heredity. Selection for accurate Bayesian inference at the collective level induces an adaptive path to the emergence of Darwinian evolution within the collectives, capable of maintaining and iteratively improving upon complex combinatorial information. When collectives are themselves Darwinian, this mechanism amounts to a top-down (filial) transition in individuality. We suggest that such selection mechanism can explain the hypothesized emergence of fast timescale Darwinian dynamics over a population of neural representations within animal and human brains, endowing them with combinatorial planning capabilities. Further possible physical implementations include prebiotic collectives of non-replicating molecules and reinforcement learning agents with parallel policy search.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.20
自引率
5.00%
发文量
218
审稿时长
51 days
期刊介绍: The Journal of Theoretical Biology is the leading forum for theoretical perspectives that give insight into biological processes. It covers a very wide range of topics and is of interest to biologists in many areas of research, including: • Brain and Neuroscience • Cancer Growth and Treatment • Cell Biology • Developmental Biology • Ecology • Evolution • Immunology, • Infectious and non-infectious Diseases, • Mathematical, Computational, Biophysical and Statistical Modeling • Microbiology, Molecular Biology, and Biochemistry • Networks and Complex Systems • Physiology • Pharmacodynamics • Animal Behavior and Game Theory Acceptable papers are those that bear significant importance on the biology per se being presented, and not on the mathematical analysis. Papers that include some data or experimental material bearing on theory will be considered, including those that contain comparative study, statistical data analysis, mathematical proof, computer simulations, experiments, field observations, or even philosophical arguments, which are all methods to support or reject theoretical ideas. However, there should be a concerted effort to make papers intelligible to biologists in the chosen field.
期刊最新文献
Impact of evolutionary relatedness on species diversification and tree shape. Beyond predation: Fish-coral interactions can tip the scales of coral disease. Bridging Wright-Fisher and Moran models. From Bayes to Darwin: Evolutionary search as an exaptation from sampling-based Bayesian inference. Analysis of electrical activities in a functional neuron with dual memristors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1