Krittika Mittal , Ke Xu , Samuel J. Rulli Jr , Guangyan Zhou , Jianguo Xia , Niladri Basu
{"title":"TPD-seq: A high throughput RNA-seq method to derive transcriptomic points of departure from cell lines","authors":"Krittika Mittal , Ke Xu , Samuel J. Rulli Jr , Guangyan Zhou , Jianguo Xia , Niladri Basu","doi":"10.1016/j.tiv.2024.106001","DOIUrl":null,"url":null,"abstract":"<div><div>There is growing scientific and regulatory interest in transcriptomic points of departure (tPOD) values from high-throughput <em>in vitro</em> experiments. To further help democratize tPOD research, here we outline ‘TPD-seq’ which links microplate-based exposure methods involving cell lines for human (Caco-2, Hep G2) and environmental (rainbow trout RTgill-W1) health, with a commercially available RNA-seq kit, with a cloud-based bioinformatics tool (ExpressAnalyst.ca). We applied the TPD-seq workflow to derive tPODs for solvents (dimethyl sulfoxide, DMSO; methanol) and positive controls (3,4-dichloroaniline, DCA; hydrogen peroxide, H<sub>2</sub>O<sub>2</sub>) commonly used in toxicity testing. The majority of reads mapped to protein coding genes (∼9 k for fish cells; ∼6 k for human cells), and about 50 % of differentially expressed genes were curve-fitted from which 90 % yielded gene benchmark doses. The most robust transcriptomic responses were caused by DMSO exposure, and tPOD values were 31–155 mM across the cell lines. OECD test guideline 249 (RTgill-W1 cells) recommends the use of DCA and here we calculated a tPOD of ∼5 to 76 μM. Finally, exposure of the two human cell lines to H<sub>2</sub>O<sub>2</sub> resulted in tPOD values that ranged from 0.7 to 1.1 mM in Caco-2 cells and 5–30 μM in Hep G2 cells. The methods outlined here are designed to be performed in laboratories with basic molecular and cell culture facilities, and the performance and scalability of the TPD-seq workflow can be determined with additional case studies.</div></div>","PeriodicalId":54423,"journal":{"name":"Toxicology in Vitro","volume":"104 ","pages":"Article 106001"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology in Vitro","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0887233324002315","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
There is growing scientific and regulatory interest in transcriptomic points of departure (tPOD) values from high-throughput in vitro experiments. To further help democratize tPOD research, here we outline ‘TPD-seq’ which links microplate-based exposure methods involving cell lines for human (Caco-2, Hep G2) and environmental (rainbow trout RTgill-W1) health, with a commercially available RNA-seq kit, with a cloud-based bioinformatics tool (ExpressAnalyst.ca). We applied the TPD-seq workflow to derive tPODs for solvents (dimethyl sulfoxide, DMSO; methanol) and positive controls (3,4-dichloroaniline, DCA; hydrogen peroxide, H2O2) commonly used in toxicity testing. The majority of reads mapped to protein coding genes (∼9 k for fish cells; ∼6 k for human cells), and about 50 % of differentially expressed genes were curve-fitted from which 90 % yielded gene benchmark doses. The most robust transcriptomic responses were caused by DMSO exposure, and tPOD values were 31–155 mM across the cell lines. OECD test guideline 249 (RTgill-W1 cells) recommends the use of DCA and here we calculated a tPOD of ∼5 to 76 μM. Finally, exposure of the two human cell lines to H2O2 resulted in tPOD values that ranged from 0.7 to 1.1 mM in Caco-2 cells and 5–30 μM in Hep G2 cells. The methods outlined here are designed to be performed in laboratories with basic molecular and cell culture facilities, and the performance and scalability of the TPD-seq workflow can be determined with additional case studies.
期刊介绍:
Toxicology in Vitro publishes original research papers and reviews on the application and use of in vitro systems for assessing or predicting the toxic effects of chemicals and elucidating their mechanisms of action. These in vitro techniques include utilizing cell or tissue cultures, isolated cells, tissue slices, subcellular fractions, transgenic cell cultures, and cells from transgenic organisms, as well as in silico modelling. The Journal will focus on investigations that involve the development and validation of new in vitro methods, e.g. for prediction of toxic effects based on traditional and in silico modelling; on the use of methods in high-throughput toxicology and pharmacology; elucidation of mechanisms of toxic action; the application of genomics, transcriptomics and proteomics in toxicology, as well as on comparative studies that characterise the relationship between in vitro and in vivo findings. The Journal strongly encourages the submission of manuscripts that focus on the development of in vitro methods, their practical applications and regulatory use (e.g. in the areas of food components cosmetics, pharmaceuticals, pesticides, and industrial chemicals). Toxicology in Vitro discourages papers that record reporting on toxicological effects from materials, such as plant extracts or herbal medicines, that have not been chemically characterized.