Rahul Sinha , Si Ja Liu , Rebekah Lee , Julia Boyd , Kyla Geary , Dianzheng Zhang
{"title":"Using cimetidine to mitigate cisplatin-induced ototoxicity","authors":"Rahul Sinha , Si Ja Liu , Rebekah Lee , Julia Boyd , Kyla Geary , Dianzheng Zhang","doi":"10.1016/j.tiv.2025.106025","DOIUrl":null,"url":null,"abstract":"<div><div>Given the well-established role of organic cation transporter 2 (OCT2) in cisplatin uptake to the inner ear cells, and the fact that cimetidine is an FDA-approved drug with well-established inhibitory activity against OCT2, we hypothesized that inhibiting OCT2-mediated cisplatin uptake with cimetidine could eliminate or alleviate cisplatin-mediated ototoxicity. Our preliminary data showed that cisplatin can reduce the viability of House Ear Institute-Organ of Corti 1 (HEI-OC1) cells in a dose-dependent manner, and cimetidine can effectively counteract this cisplatin-induced toxicity without affecting cisplatin's effect on cancer cells. Therefore, combined application of these drugs could ameliorate cisplatin ototoxicity with minimal impact on their anti-cancer effect.</div></div>","PeriodicalId":54423,"journal":{"name":"Toxicology in Vitro","volume":"104 ","pages":"Article 106025"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology in Vitro","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0887233325000190","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Given the well-established role of organic cation transporter 2 (OCT2) in cisplatin uptake to the inner ear cells, and the fact that cimetidine is an FDA-approved drug with well-established inhibitory activity against OCT2, we hypothesized that inhibiting OCT2-mediated cisplatin uptake with cimetidine could eliminate or alleviate cisplatin-mediated ototoxicity. Our preliminary data showed that cisplatin can reduce the viability of House Ear Institute-Organ of Corti 1 (HEI-OC1) cells in a dose-dependent manner, and cimetidine can effectively counteract this cisplatin-induced toxicity without affecting cisplatin's effect on cancer cells. Therefore, combined application of these drugs could ameliorate cisplatin ototoxicity with minimal impact on their anti-cancer effect.
期刊介绍:
Toxicology in Vitro publishes original research papers and reviews on the application and use of in vitro systems for assessing or predicting the toxic effects of chemicals and elucidating their mechanisms of action. These in vitro techniques include utilizing cell or tissue cultures, isolated cells, tissue slices, subcellular fractions, transgenic cell cultures, and cells from transgenic organisms, as well as in silico modelling. The Journal will focus on investigations that involve the development and validation of new in vitro methods, e.g. for prediction of toxic effects based on traditional and in silico modelling; on the use of methods in high-throughput toxicology and pharmacology; elucidation of mechanisms of toxic action; the application of genomics, transcriptomics and proteomics in toxicology, as well as on comparative studies that characterise the relationship between in vitro and in vivo findings. The Journal strongly encourages the submission of manuscripts that focus on the development of in vitro methods, their practical applications and regulatory use (e.g. in the areas of food components cosmetics, pharmaceuticals, pesticides, and industrial chemicals). Toxicology in Vitro discourages papers that record reporting on toxicological effects from materials, such as plant extracts or herbal medicines, that have not been chemically characterized.