Meteorin-like protein alleviates intervertebral disc degeneration by suppressing lipid accumulation in nucleus pulposus cells via PPARα-CPT1A activation.

Zhengqi Huang, Ming Shi, Chao Zhang, Zhihuai Deng, Tianyu Qin, Jiajun Wu, Xiaohe Zhang, Weitao Han, Shuangxing Li, Bo Gao, Yin Xiao, Dongsheng Huang, Wei Ye
{"title":"Meteorin-like protein alleviates intervertebral disc degeneration by suppressing lipid accumulation in nucleus pulposus cells via PPARα-CPT1A activation.","authors":"Zhengqi Huang, Ming Shi, Chao Zhang, Zhihuai Deng, Tianyu Qin, Jiajun Wu, Xiaohe Zhang, Weitao Han, Shuangxing Li, Bo Gao, Yin Xiao, Dongsheng Huang, Wei Ye","doi":"10.1016/j.bbadis.2024.167635","DOIUrl":null,"url":null,"abstract":"<p><p>Disturbances in lipid metabolism are closely related to intervertebral disc degeneration (IDD). However, the lipid metabolism characteristics of nucleus pulposus (NP) cells during IDD are unclear. Exercise protects against IDD and acts as a potent mediator of organ metabolism, in which muscle-secreted myokines actively participate. However, whether exercise-induced myokines alleviate IDD by regulating lipid metabolism in NP cells remains unknown. The present study revealed that lipid accumulation is the metabolic reprogramming phenotype in NP cells during IDD, which was attributed to an imbalance between increased fatty acid/triglyceride synthesis and diminished utilization, and was further associated with extracellular matrix (ECM) degradation and cell senescence. To explore the interaction between exercise and IDD, Sprague-Dawley rats were subjected to five weeks of treadmill running exercise, and rats in the exercise group exhibited less severe IDD than did those in the sedentary group. The expression of meteorin-like protein (Metrnl), a newly-discovered myokine that participates in lipid metabolism regulation, was observed to increase in muscle, serum and NP tissue after exercise. Moreover, Metrnl ameliorated lipid accumulation in NP cells and further alleviated ECM degradation and cell senescence. Mechanistically, Metrnl activated the fatty acid β-oxidation rate-limiting enzyme carnitine palmitoyltransferase 1A (CPT1A) via peroxisome proliferator-activated receptor α (PPARα) to increase lipid utilization in NP cells. This study provides insight into the lipid metabolic features of NP cells in IDD and reveals the intrinsic connections among exercise, metabolism and IDD, with the myokine Metrnl emerging as a pivotal mediator with therapeutic potential.</p>","PeriodicalId":93896,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":" ","pages":"167635"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular basis of disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bbadis.2024.167635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Disturbances in lipid metabolism are closely related to intervertebral disc degeneration (IDD). However, the lipid metabolism characteristics of nucleus pulposus (NP) cells during IDD are unclear. Exercise protects against IDD and acts as a potent mediator of organ metabolism, in which muscle-secreted myokines actively participate. However, whether exercise-induced myokines alleviate IDD by regulating lipid metabolism in NP cells remains unknown. The present study revealed that lipid accumulation is the metabolic reprogramming phenotype in NP cells during IDD, which was attributed to an imbalance between increased fatty acid/triglyceride synthesis and diminished utilization, and was further associated with extracellular matrix (ECM) degradation and cell senescence. To explore the interaction between exercise and IDD, Sprague-Dawley rats were subjected to five weeks of treadmill running exercise, and rats in the exercise group exhibited less severe IDD than did those in the sedentary group. The expression of meteorin-like protein (Metrnl), a newly-discovered myokine that participates in lipid metabolism regulation, was observed to increase in muscle, serum and NP tissue after exercise. Moreover, Metrnl ameliorated lipid accumulation in NP cells and further alleviated ECM degradation and cell senescence. Mechanistically, Metrnl activated the fatty acid β-oxidation rate-limiting enzyme carnitine palmitoyltransferase 1A (CPT1A) via peroxisome proliferator-activated receptor α (PPARα) to increase lipid utilization in NP cells. This study provides insight into the lipid metabolic features of NP cells in IDD and reveals the intrinsic connections among exercise, metabolism and IDD, with the myokine Metrnl emerging as a pivotal mediator with therapeutic potential.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bilirubin nanoparticles modulate Treg/Th17 cells and functional metabolism of gut microbiota to inhibit lung adenocarcinoma. Corrigendum to "Ligation of CD180 contributes to endotoxic shock by regulating the accumulation and immunosuppressive activity of myeloid-derived suppressor cells through STAT3." [Biochim Biophys Acta (BBA) - Mol Basis Dis 2019; 1865(3):535-546.]. Deep multi-omics integration approach reveals new molecular features of uterine leiomyosarcoma. Dynamic interplay of Sp1, YY1, and DUX4 in regulating FRG1 transcription with intricate balance. Mild-to-moderate psoriasis is associated with subclinical inflammation in the duodenum and a tendency of disturbed intestinal barrier.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1