A blockchain-enabled horizontal federated learning system for fuzzy invasion detection in maintaining space security

IF 10.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Industrial Information Integration Pub Date : 2024-12-09 DOI:10.1016/j.jii.2024.100745
Y.P. Tsang, C.H. Wu, W.H. Ip, K.L. Yung
{"title":"A blockchain-enabled horizontal federated learning system for fuzzy invasion detection in maintaining space security","authors":"Y.P. Tsang, C.H. Wu, W.H. Ip, K.L. Yung","doi":"10.1016/j.jii.2024.100745","DOIUrl":null,"url":null,"abstract":"Recent advances in Industry 4.0 technologies drive robotic objects' decentralisation and autonomous intelligence, raising emerging space security concerns, specifically invasion detection. Existing physical detection methods, such as vision-based and radar-based techniques, are ineffective in detecting small-scale objects moving at low speeds. Therefore, it is worth investigating and leveraging the power of artificial intelligence to discover invasion patterns through space data analytics. Additionally, fuzzy modelling is needed for invasion detection to enhance the capability of handling data uncertainty and adaptability to evolving invasion patterns. This study proposes a Blockchain-Enabled Federated Fuzzy Invasion Detection System (BFFIDS) to address these challenges and establish real-time invasion detection capabilities for edge devices in the low earth orbit. The entire model training process is performed over the blockchain and horizontal federated learning scheme, securely reaching consensus in model updates. The system's effectiveness is examined through case analyses on a publicly available dataset. The results indicate that the proposed system can effectively maintain the desired invasion detection performance, with an average Area Under Curve (AUC) value of 0.99 across experimental runs. Utilising the blockchain-based federated learning process, the total size of transmitted data is reduced by 89.5 %, supporting the development of lightweight invasion detection applications. A closed-loop mechanism for continuously updating the space invasion detection model is established to achieve high space security.","PeriodicalId":55975,"journal":{"name":"Journal of Industrial Information Integration","volume":"33 1","pages":""},"PeriodicalIF":10.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Information Integration","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.jii.2024.100745","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in Industry 4.0 technologies drive robotic objects' decentralisation and autonomous intelligence, raising emerging space security concerns, specifically invasion detection. Existing physical detection methods, such as vision-based and radar-based techniques, are ineffective in detecting small-scale objects moving at low speeds. Therefore, it is worth investigating and leveraging the power of artificial intelligence to discover invasion patterns through space data analytics. Additionally, fuzzy modelling is needed for invasion detection to enhance the capability of handling data uncertainty and adaptability to evolving invasion patterns. This study proposes a Blockchain-Enabled Federated Fuzzy Invasion Detection System (BFFIDS) to address these challenges and establish real-time invasion detection capabilities for edge devices in the low earth orbit. The entire model training process is performed over the blockchain and horizontal federated learning scheme, securely reaching consensus in model updates. The system's effectiveness is examined through case analyses on a publicly available dataset. The results indicate that the proposed system can effectively maintain the desired invasion detection performance, with an average Area Under Curve (AUC) value of 0.99 across experimental runs. Utilising the blockchain-based federated learning process, the total size of transmitted data is reduced by 89.5 %, supporting the development of lightweight invasion detection applications. A closed-loop mechanism for continuously updating the space invasion detection model is established to achieve high space security.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Industrial Information Integration
Journal of Industrial Information Integration Decision Sciences-Information Systems and Management
CiteScore
22.30
自引率
13.40%
发文量
100
期刊介绍: The Journal of Industrial Information Integration focuses on the industry's transition towards industrial integration and informatization, covering not only hardware and software but also information integration. It serves as a platform for promoting advances in industrial information integration, addressing challenges, issues, and solutions in an interdisciplinary forum for researchers, practitioners, and policy makers. The Journal of Industrial Information Integration welcomes papers on foundational, technical, and practical aspects of industrial information integration, emphasizing the complex and cross-disciplinary topics that arise in industrial integration. Techniques from mathematical science, computer science, computer engineering, electrical and electronic engineering, manufacturing engineering, and engineering management are crucial in this context.
期刊最新文献
The impact of generative AI on management innovation Digital twin-enabled multi-robot system for collaborative assembly of unorganized parts A comprehensive analysis of multi-strategic RIME algorithm for UAV path planning in varied terrains Towards cognitive intelligence-enabled product design: The evolution, state-of-the-art, and future of AI-enabled product design A blockchain-enabled horizontal federated learning system for fuzzy invasion detection in maintaining space security
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1