Triggers of inland heavy rainfall inducing convective storms in West Africa : Case study of June, 2021

IF 6.1 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Weather and Climate Extremes Pub Date : 2024-12-16 DOI:10.1016/j.wace.2024.100740
G.A. Torsah, M.A. Osei, J.N.A. Aryee, J.A.A. Oti, L.K. Amekudzi
{"title":"Triggers of inland heavy rainfall inducing convective storms in West Africa : Case study of June, 2021","authors":"G.A. Torsah, M.A. Osei, J.N.A. Aryee, J.A.A. Oti, L.K. Amekudzi","doi":"10.1016/j.wace.2024.100740","DOIUrl":null,"url":null,"abstract":"Due to their rapidly changing atmospheric processes, forecasting thunderstorms resulting from the merger of isolated cells is a complex task for highly-resolved numerical weather prediction models. This study employed a novel approach to establish the processes that drive updrafts and downdrafts in the merger of isolated thunderstorm cells that produced heavy rainfall and flooding in Kumasi and other parts of the Ashanti Region during June 23–24, 2021. We examine the dynamic and thermodynamic factors to determine the processes that led to the heavy rainfall. The study confirms that the established moisture gradient between the south and north of the region leads to differential surface heating that deepens the planetary boundary layer. Additionally, colder air aloft a warmer surface induces atmospheric overturning, impacts the CAPE and produces substantial updrafts. Also, lower equivalent potential temperature values before storm events, coupled with reduced warming and moisture and increased vertical motion, especially in the mid-levels, favor dry air entrainment, thereby enhancing updraft potential in the mid-troposphere. Besides, the study found that strong rainfall during storms correlates with high soil moisture, evaporative fraction, and variable CAPE and updrafts, which prolonged surface convergence and upper-level divergence, leading to sustained convective activity and heavy rainfall. Notably, the study establishes the roles of African Easterly Waves and low-level wind shear in influencing thunderstorm updrafts and rainfall propagation. Furthermore, we found a single-cell thunderstorm with a variable wind pattern that impacted a defined path during the storm progression. These findings provide valuable information to enhance the development of early warning systems for the detection of localized thunderstorm activities during the monsoon period.","PeriodicalId":48630,"journal":{"name":"Weather and Climate Extremes","volume":"8 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weather and Climate Extremes","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.wace.2024.100740","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Due to their rapidly changing atmospheric processes, forecasting thunderstorms resulting from the merger of isolated cells is a complex task for highly-resolved numerical weather prediction models. This study employed a novel approach to establish the processes that drive updrafts and downdrafts in the merger of isolated thunderstorm cells that produced heavy rainfall and flooding in Kumasi and other parts of the Ashanti Region during June 23–24, 2021. We examine the dynamic and thermodynamic factors to determine the processes that led to the heavy rainfall. The study confirms that the established moisture gradient between the south and north of the region leads to differential surface heating that deepens the planetary boundary layer. Additionally, colder air aloft a warmer surface induces atmospheric overturning, impacts the CAPE and produces substantial updrafts. Also, lower equivalent potential temperature values before storm events, coupled with reduced warming and moisture and increased vertical motion, especially in the mid-levels, favor dry air entrainment, thereby enhancing updraft potential in the mid-troposphere. Besides, the study found that strong rainfall during storms correlates with high soil moisture, evaporative fraction, and variable CAPE and updrafts, which prolonged surface convergence and upper-level divergence, leading to sustained convective activity and heavy rainfall. Notably, the study establishes the roles of African Easterly Waves and low-level wind shear in influencing thunderstorm updrafts and rainfall propagation. Furthermore, we found a single-cell thunderstorm with a variable wind pattern that impacted a defined path during the storm progression. These findings provide valuable information to enhance the development of early warning systems for the detection of localized thunderstorm activities during the monsoon period.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
西非内陆强降雨诱发对流风暴的触发因素:以2021年6月为例
由于其快速变化的大气过程,对高分辨率数值天气预报模式来说,预报由孤立单体合并引起的雷暴是一项复杂的任务。本研究采用了一种新颖的方法来建立在2021年6月23日至24日期间在库马西和阿散蒂地区其他地区产生强降雨和洪水的孤立雷暴单体合并过程中驱动上升和下降气流的过程。我们研究了动力和热力学因素,以确定导致强降雨的过程。该研究证实,该地区南北之间已建立的水汽梯度导致了不同的地表加热,从而加深了行星边界层。此外,较冷的空气在较暖的表面上方引起大气翻转,影响CAPE并产生大量上升气流。此外,风暴事件前较低的等效位温值,加上暖湿减少和垂直运动增加,特别是在中层,有利于干燥空气夹带,从而增强对流层中层的上升气流潜力。此外,研究发现,暴雨期间强降雨与土壤湿度、蒸发分数高、CAPE和上升气流变化有关,这些变化延长了地面辐合和高层辐散时间,导致持续对流活动和强降雨。值得注意的是,该研究确定了非洲东风波和低层风切变在影响雷暴上升气流和降雨传播中的作用。此外,我们还发现了一个具有可变风型的单细胞雷暴,它在风暴发展过程中影响了一条确定的路径。这些发现提供了宝贵的资料,有助发展侦测季风期局部雷暴活动的早期预警系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Weather and Climate Extremes
Weather and Climate Extremes Earth and Planetary Sciences-Atmospheric Science
CiteScore
11.00
自引率
7.50%
发文量
102
审稿时长
33 weeks
期刊介绍: Weather and Climate Extremes Target Audience: Academics Decision makers International development agencies Non-governmental organizations (NGOs) Civil society Focus Areas: Research in weather and climate extremes Monitoring and early warning systems Assessment of vulnerability and impacts Developing and implementing intervention policies Effective risk management and adaptation practices Engagement of local communities in adopting coping strategies Information and communication strategies tailored to local and regional needs and circumstances
期刊最新文献
Characteristics of precipitation associated with post-tropical cyclones in the North Atlantic Triggers of inland heavy rainfall inducing convective storms in West Africa : Case study of June, 2021 Spatiotemporal variation of intra-urban heat and heatwaves across Greater Sydney, Australia Projecting impacts of extreme weather events on crop yields using LASSO regression Moisture sources for the unprecedented precipitation event in the heart of Taklimakan desert
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1